Skip to main content

Genetic Screens to Identify New Notch Pathway Mutants in Drosophila

  • Protocol
  • First Online:
Notch Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1187))

Abstract

Notch signaling controls a wide range of developmental processes, including proliferation, apoptosis, and cell fate specification during both development and adult tissue homeostasis. The functional versatility of the Notch signaling pathway is tightly linked with the complexity of its regulation in different cellular contexts. To unravel the complexity of Notch signaling, it is important to identify the different components of the Notch signaling pathway. A powerful strategy to accomplish this task is based on genetic screens. Given that the developmental context of signaling is important, these screens should be customized to specific cell populations or tissues. Here, I describe how to perform F1 clonal forward genetic screens in Drosophila to identify novel components of the Notch signaling pathway. These screens combine a classical EMS (ethyl methanesulfonate) chemical mutagenesis protocol along with clonal analysis via FRT-mediated mitotic recombination. These F1 clonal screens allow rapid phenotypic screening within clones of mutant cells induced at specific developmental stages and in tissues of interest, bypassing the pleiotropic effects of isolated mutations. More importantly, since EMS mutations have been notoriously difficult to map to specific genes in the past, I briefly discuss mapping methods that allow rapid identification of the causative mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellen HJ, Tong C, Tsuda H (2010) 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci 11:514–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. St Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 3:176–188

    Article  CAS  PubMed  Google Scholar 

  3. Adams MD, Sekelsky JJ (2002) From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nat Rev Genet 3:189–198

    Article  CAS  PubMed  Google Scholar 

  4. Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6:9–23

    Article  CAS  PubMed  Google Scholar 

  5. Venken KJ, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Rørth P, Szabo K, Bailey A et al (1998) Systematic gain-of-function genetics in Drosophila. Development 125:1049–1057

    PubMed  Google Scholar 

  7. Rørth P (1996) A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci U S A 93:12418–12422

    Article  PubMed Central  PubMed  Google Scholar 

  8. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  9. Thibault ST, Singer MA, Miyazaki WY et al (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36:283–287

    Article  CAS  PubMed  Google Scholar 

  10. Bellen HJ, Levis RW, Liao G et al (2004) The BDGP gene disruption project: single transposon insertions associated with 40 % of Drosophila genes. Genetics 167:761–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bischof J, Björklund M, Furger E et al (2013) A versatile platform for creating a comprehensive UAS-ORFeome library in Drosophila. Development 140:2434–2442

    Article  CAS  PubMed  Google Scholar 

  12. Schertel C, Huang D, Björklund M et al (2013) Systematic screening of a Drosophila ORF library in vivo uncovers Wnt/Wg pathway components. Dev Cell 25:207–219

    Article  CAS  PubMed  Google Scholar 

  13. Guruharsha KG, Rual JF, Zhai B et al (2011) A protein complex network of Drosophila melanogaster. Cell 147:690–703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Go MJ, Artavanis-Tsakonas S (1998) A genetic screen for novel components of the notch signaling pathway during Drosophila bristle development. Genetics 150:211–220

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Müller D, Kugler SJ, Preiss A et al (2005) Genetic modifier screens on Hairless gain-of-function phenotypes reveal genes involved in cell differentiation, cell growth and apoptosis in Drosophila melanogaster. Genetics 171:1137–1152

    Article  PubMed Central  PubMed  Google Scholar 

  16. Verheyen EM, Purcell KJ, Fortini ME et al (1996) Analysis of dominant enhancers and suppressors of activated Notch in Drosophila. Genetics 144:1127–1141

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Xu T, Artavanis-Tsakonas S (1990) deltex, a locus interacting with the neurogenic genes, Notch, Delta and mastermind in Drosophila melanogaster. Genetics 126:665–677

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Xu T, Rebay I, Fleming RJ et al (1990) The Notch locus and the genetic circuitry involved in early Drosophila neurogenesis. Genes Dev 4:464–475

    Article  CAS  PubMed  Google Scholar 

  19. Kankel MW, Hurlbut GD, Upadhyay G et al (2007) Investigating the genetic circuitry of mastermind in Drosophila, a notch signal effector. Genetics 177:2493–2505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Shalaby NA, Parks AL, Morreale EJ et al (2009) A screen for modifiers of notch signaling uncovers Amun, a protein with a critical role in sensory organ development. Genetics 182:1061–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Dietzl G, Chen D, Schnorrer F et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156

    Article  CAS  PubMed  Google Scholar 

  22. Mummery-Widmer JL, Yamazaki M, Stoeger T et al (2009) Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 458:987–992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Saj A, Arziman Z, Stempfle D et al (2010) A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive notch interaction network. Dev Cell 18:862–876

    Article  CAS  PubMed  Google Scholar 

  24. Bejarano F, Bortolamiol-Becet D, Dai Q et al (2012) A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development 139:2821–2831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Schertel C, Rutishauser T, Förstemann K et al (2012) Functional characterization of Drosophila microRNAs by a novel in vivo library. Genetics 192:1543–1552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Szuplewski S, Kugler JM, Lim SF et al (2012) MicroRNA transgene overexpression complements deficiency-based modifier screens in Drosophila. Genetics 190:617–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Bokel C (2008) EMS screens: from mutagenesis to screening and mapping. Methods Mol Biol 420:119–138

    Article  PubMed  Google Scholar 

  28. Grigliatti TA (1998) Mutagenesis. In: Roberts DB (ed) Drosophila, a practical approach. Oxford Univeristy Press, Oxford, pp 55–84

    Google Scholar 

  29. Ashburner M, Golic KG, Hawley RS (2005) Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 207–312

    Google Scholar 

  30. Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237

    CAS  PubMed  Google Scholar 

  31. Rook JE, Theodosiou NA, Xu T (2000) Clonal analysis in the examination of gene function in Drosophila. Methods Mol Biol 137:15–22

    Google Scholar 

  32. Newsome TP, Asling B, Dickson BJ (2000) Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127:851–860

    CAS  PubMed  Google Scholar 

  33. Stowers RS, Schwarz TL (1999) A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152:1631–1639

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Acar M, Jafar-Nejad H, Takeuchi H et al (2008) Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell 132:247–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Giagtzoglou N, Yamamoto S, Zitserman D et al (2012) dEHBP1 controls exocytosis and recycling of Delta during asymmetric divisions. J Cell Biol 196:65–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Jafar-Nejad H, Andrews HK, Acar M et al (2005) Sec15, a component of the exocyst, promotes notch signaling during the asymmetric division of Drosophila sensory organ precursors. Dev Cell 9:351–363

    Article  CAS  PubMed  Google Scholar 

  37. Rajan A, Tien AC, Haueter CM et al (2009) The Arp2/3 complex and WASp are required for apical trafficking of Delta into microvilli during cell fate specification of sensory organ precursors. Nat Cell Biol 11:815–824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Tien AC, Rajan A, Schulze KL et al (2008) Ero1L, a thiol oxidase, is required for Notch signaling through cysteine bridge formation of the Lin12-Notch repeats in Drosophila melanogaster. J Cell Biol 182:1113–1125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Yamamoto S, Charng WL, Rana NA et al (2012) A mutation in EGF repeat-8 of Notch discriminates between Serrate/Jagged and Delta family ligands. Science 338:1229–1232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Charng WL, Yamamoto S, Jaiswal M et al (2013) Drosophila Tempura, a novel protein prenyltransferase α subunit, regulates Notch signaling via Rab1 and Rab11. PLoS Biol 12(1):e1001777

    Article  Google Scholar 

  41. Berdnik D, Török T, González-Gaitán M et al (2002) The endocytic protein alpha-Adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev Cell 3:221–231

    Article  CAS  PubMed  Google Scholar 

  42. Herz HM, Chen Z, Scherr H et al (2006) vps25 mosaics display non-autonomous cell survival and overgrowth, and autonomous apoptosis. Development 133:1871–1880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Hutterer A, Knoblich JA (2005) Numb and alpha-Adaptin regulate Sanpodo endocytosis to specify cell fate in Drosophila external sensory organs. EMBO Rep 6:836–842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Vaccari T, Bilder D (2005) The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev Cell 9:687–698

    Article  CAS  PubMed  Google Scholar 

  45. Yan Y, Denef N, Schupbach T (2009) The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila. Dev Cell 17:387–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Gallagher CM, Knoblich JA (2006) The conserved c2 domain protein lethal (2) giant discs regulates protein trafficking in Drosophila. Dev Cell 11:641–653

    Article  CAS  PubMed  Google Scholar 

  47. Yamamoto S, Charng WL, Bellen HJ (2010) Endocytosis and intracellular trafficking of Notch and its ligands. Curr Top Dev Biol 92:165–200

    Article  CAS  PubMed  Google Scholar 

  48. Kandachar V, Roegiers F (2012) Endocytosis and control of Notch signaling. Curr Opin Cell Biol 24:534–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Brennan K, Tateson R, Lewis K et al (1997) A functional analysis of Notch mutations in Drosophila. Genetics 147:177–188

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Andrews HK, Giagtzoglou N, Yamamoto S et al (2009) Sequoia regulates cell fate decisions in the external sensory organs of adult Drosophila. EMBO Rep 10:636–641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Hiesinger PR, Fayyazuddin A, Mehta SQ et al (2005) The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 121:607–620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Cook KR, Parks AL, Jacobus LM et al (2010) New research resources at the Bloomington Drosophila Stock Center. Fly (Austin) 4:88–91

    Article  CAS  Google Scholar 

  53. Cook RK, Deal ME, Deal JA et al (2010) A new resource for characterizing X-linked genes in Drosophila melanogaster: systematic coverage and subdivision of the X chromosome with nested, Y-linked duplications. Genetics 186:1095–1109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Parks AL, Cook KR, Belvin M et al (2004) Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36:288–292

    Article  CAS  PubMed  Google Scholar 

  55. Ryder E, Blows F, Ashburner M et al (2004) The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 167:797–813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Venken KJ, Popodi E, Holtzman SL et al (2010) A molecularly defined duplication set for the X chromosome of Drosophila melanogaster. Genetics 186:1111–1125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Xiong B, Bayat V, Jaiswal M et al (2012) Crag is a GEF for Rab11 required for rhodopsin trafficking and maintenance of adult photoreceptor cells. PLoS Biol 10:e1001438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Zhang K, Li Z, Jaiswal M et al (2013) The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit. J Cell Biol 200:807–820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Yamamoto S, Bayat V, Bellen HJ et al (2013) Protein phosphatase 1β limits ring canal constriction during Drosophila germline cyst formation. PLoS One 8:e70502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Zhai RG, Hiesinger PR, Koh TW et al (2003) Mapping Drosophila mutations with molecularly defined P element insertions. Proc Natl Acad Sci U S A 100:10860–10865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Berger J, Suzuki T, Senti KA et al (2001) Genetic mapping with SNP markers in Drosophila. Nat Genet 29:475–481

    Article  CAS  PubMed  Google Scholar 

  62. Hoskins RA, Phan AC, Naeemuddin M et al (2001) Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster. Genome Res 11:1100–1113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Schnorrer F, Ahlford A, Chen D et al (2008) Positional cloning by fast-track SNP-mapping in Drosophila melanogaster. Nat Protoc 3:1751–1765

    Article  PubMed  Google Scholar 

  64. Martin SG, Dobi KC, St Johnston D (2001) A rapid method to map mutations in Drosophila. Genome Biol 2(9): RESEARCH0036

    Google Scholar 

  65. Zipperlen P, Nairz K, Rimann I et al (2005) A universal method for automated gene mapping. Genome Biol 6:R19

    Article  PubMed Central  PubMed  Google Scholar 

  66. Ryder E, Ashburner M, Bautista-Llacer R et al (2007) The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics 177:615–629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Blumenstiel JP, Noll AC, Griffiths JA et al (2009) Identification of EMS-induced mutations in Drosophila melanogaster by whole-genome sequencing. Genetics 182:25–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Hobert O (2010) The impact of whole genome sequencing on model system genetics: get ready for the ride. Genetics 184:317–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Wang H, Chattopadhyay A, Li Z et al (2010) Rapid identification of heterozygous mutations in Drosophila melanogaster using genomic capture sequencing. Genome Res 20:981–988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Giagtzoglou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Giagtzoglou, N. (2014). Genetic Screens to Identify New Notch Pathway Mutants in Drosophila . In: Bellen, H., Yamamoto, S. (eds) Notch Signaling. Methods in Molecular Biology, vol 1187. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1139-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1139-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1138-7

  • Online ISBN: 978-1-4939-1139-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics