Skip to main content

Global Ubiquitination Analysis by SILAC in Mammalian Cells

  • Protocol
  • First Online:
Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1188))

Abstract

Ubiquitination is a versatile and dynamic posttranslational modification in cells, regulating almost all cellular events. With rapid developments of affinity capture reagents and high-resolution mass spectrometry, it is now feasible to globally analyze the ubiquitinated proteome (ubiquitome) using quantitative strategies, such as stable isotope labeling with amino acids in cell culture (SILAC). Here we describe in detail a SILAC protocol to profile the ubiquitome in mammalian cells including protein labeling, antibody-based enrichment, and analysis by mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229

    Article  CAS  PubMed  Google Scholar 

  2. Schwartz AL, Ciechanover A (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49:73–96

    Article  CAS  PubMed  Google Scholar 

  3. Peng J, Schwartz D, Elias JE et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926

    Article  CAS  PubMed  Google Scholar 

  4. Kim W, Bennett EJ, Huttlin EL et al (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44:325–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wagner SA, Beli P, Weinert BT et al (2012) Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol Cell Proteomics 11:1578–1585

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kulathu Y, Komander D (2012) Atypical ubiquitylation – the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 13:508–523

    Article  CAS  PubMed  Google Scholar 

  7. Meierhofer D, Wang X, Huang L et al (2008) Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 7:4566–4576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kirkpatrick DS, Denison C, Gygi SP (2005) Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat Cell Biol 7:750–757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Xu P, Peng J (2006) Dissecting the ubiquitin pathway by mass spectrometry. Biochim Biophys Acta 1764:1940–1947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Franco M, Seyfried NT, Brand AH et al (2011) A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol Cell Proteomics 10(M110):002188

    PubMed  Google Scholar 

  11. Chen PC, Na CH, Peng J (2012) Quantitative proteomics to decipher ubiquitin signaling. Amino Acids 43:1049–1060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bustos D, Bakalarski CE, Yang Y et al (2012) Characterizing ubiquitination sites by peptide-based immunoaffinity enrichment. Mol Cell Proteomics 11:1529–1540

    Article  PubMed Central  PubMed  Google Scholar 

  13. Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28:868–873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lee KA, Hammerle LP, Andrews PS et al (2011) Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels. J Biol Chem 286:41530–41538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Emanuele MJ, Elia AE, Xu Q et al (2011) Global identification of modular cullin-RING ligase substrates. Cell 147:459–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wagner SA, Beli P, Weinert BT et al (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10(M111):013284

    PubMed  Google Scholar 

  17. Udeshi ND, Mani DR, Eisenhaure T et al (2012) Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol Cell Proteomics 11:148–159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Na CH, Jones DR, Yang Y et al (2012) Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. J Proteome Res 11:4722–4732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660

    Article  CAS  PubMed  Google Scholar 

  20. Xu P, Duong DM, Seyfried NT et al (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Eng J, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  PubMed  Google Scholar 

  22. Xu P, Duong DM, Peng J (2009) Systematical optimization of reverse-phase chromatography for shotgun proteomics. J Proteome Res 8:3944–3950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  CAS  PubMed  Google Scholar 

  24. Seyfried NT, Xu P, Duong DM et al (2008) Systematic approach for validating the ubiquitinated proteome. Anal Chem 80:4161–4169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Seyfried NT, Gozal YM, Dammer EB et al (2010) Multiplex SILAC analysis of a cellular TDP-43 proteinopathy model reveals protein inclusions associated with SUMOylation and diverse polyubiquitin chains. Mol Cell Proteomics 9:705–718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Larance M, Bailly AP, Pourkarimi E et al (2011) Stable-isotope labeling with amino acids in nematodes. Nat Methods 8:849–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sury MD, Chen JX, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9:2173–2183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Xu P, Tan H, Duong DM et al (2012) Stable isotope labeling with amino acids in Drosophila for quantifying proteins and modifications. J Proteome Res 11:4403–4412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kruger M, Moser M, Ussar S et al (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364

    Article  PubMed  Google Scholar 

  30. Nielsen ML, Vermeulen M, Bonaldi T et al (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5:459–460

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Institutes of Health grant NS081571 and American Cancer Society grant RSG-09-181, and ALSAC (American Lebanese Syrian Associated Charities).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wu, Z., Na, C.H., Tan, H., Peng, J. (2014). Global Ubiquitination Analysis by SILAC in Mammalian Cells. In: Warscheid, B. (eds) Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Methods in Molecular Biology, vol 1188. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1142-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1142-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1141-7

  • Online ISBN: 978-1-4939-1142-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics