Skip to main content

Measuring Hox-DNA Binding by Electrophoretic Mobility Shift Analysis

  • Protocol
  • First Online:
Hox Genes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1196))

Abstract

Understanding gene regulation by Hox transcription factors requires understanding the forces that underlie DNA binding by these proteins. Electrophoretic mobility shift analysis (EMSA) not only allows measurement of protein affinity and cooperativity but also permits visualization of differently migrating protein-DNA complexes, including complexes with different compositions or complexes with identical compositions yet assembled in different geometries. Furthermore, protein activity can be measured, allowing correction of binding constants for the percentage of protein that is properly folded and capable of binding DNA. Protocols for measuring protein activity and the equilibrium DNA-binding dissociation constant (K d) are provided. This versatile assay system can be adjusted based on specific needs to measure other parameters, including the kinetic association and dissociation constants (k a and k d) and the formation of heterologous protein-protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carey J (1991) Gel retardation. Methods Enzymol 208:103–117

    Article  CAS  PubMed  Google Scholar 

  2. Senear DF, Brenowitz M (1991) Determination of binding constants for cooperative site-specific protein-DNA interactions using the gel mobility-shift assay. J Biol Chem 266:13661–13671

    CAS  PubMed  Google Scholar 

  3. Liu Y, Matthews KS, Bondos SE (2009) Internal regulatory interactions determine DNA binding specificity by a Hox transcription factor. J Mol Biol 390:760–774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Beachy PA, Varkey J, Young KE et al (1993) Cooperative binding of an Ultrabithorax homeodomain protein to nearby and distant DNA sites. Mol Cell Biol 13:6941–6956

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Joshi R, Sun L, Mann R (2010) Dissecting the functional specificities of two Hox proteins. Genes Dev 24:1533–1545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bondos SE, Bicknell AA (2003) Detection and prevention of protein aggregation before, during, and after purification. Anal Biochem 316:223–231

    Article  CAS  PubMed  Google Scholar 

  7. Lane D, Prentki P, Chandler M (1992) Use of gel retardation to analyze protein-nucleic acid interactions. Microbiol Rev 56:509–528

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2:1849–1861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9:6505–6525

    Article  Google Scholar 

  10. Gerstle JT, Fried MG (1991) Measurement of binding-kinetics using the gel-electrophoresis mobility shift assay. Electrophoresis 14:725–731

    Article  Google Scholar 

  11. Bondos SE, Catanese DJ Jr, Tan XX et al (2004) Hox transcription factor Ultrabithorax physically and genetically interacts with Disconnected Interacting Protein 1, a double-stranded RNA-binding protein. J Biol Chem 279:26433–26444

    Article  CAS  PubMed  Google Scholar 

  12. Merabet S, Saadaoui M, Sambrani N et al (2007) A unique Extradenticle recruitment mode in the Drosophila Hox protein Ultrabithorax. Proc Natl Acad Sci U S A 104:16946–16951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chan SK, Wang XA, Mak SS et al (1994) The DNA binding specificity of Ultrabithorax is modulated by cooperative interactions with extradenticle, another homeoprotein. Cell 78:603–615

    Article  CAS  PubMed  Google Scholar 

  14. Rippe K (1997) Analysis of protein-DNA binding at equilibrium. B I F Futura 12:20–26

    Google Scholar 

  15. Bondos SE (2006) Methods for measuring protein aggregation. Curr Anal Chem 2:157–170

    Article  CAS  Google Scholar 

  16. Churion KA, Bondos SE (2012) Identifying solubility-promoting buffers for intrinsically disordered proteins prior to purification. Methods Mol Biol 896:415–427

    CAS  PubMed  Google Scholar 

  17. Liu Y, Matthews KS, Bondos SE (2008) Multiple intrinsically disordered sequences alter DNA binding by the homeodomain of the Drosophila Hox protein Ultrabithorax. J Biol Chem 283:20874–20887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wong EYM, Wang XA, Mak SS et al (2011) Hoxb3 negatively regulates Hoxb1 expression in mouse hindbrain patterning. Dev Biol 352:382–392

    Article  CAS  PubMed  Google Scholar 

  19. Shen WF, Rozenfeld S, Kwong A et al (1999) HOXA9 forms triple complexes with PBX2 and MEIS1 in myeloid cells. Mol Cell Biol 19:3051–3061

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Galant R, Walsh CM, Carroll SB (2002) Hox repression of a target gene: extradenticle-independent, additive action through multiple monomer binding sites. Development 129:3115–3126

    CAS  PubMed  Google Scholar 

  21. Li L, von Kessler D, Beachy PA et al (1996) pH-dependent enhancement of DNA binding by the Ultrabithorax homeodomain. Biochemistry 35:9832–9839

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by an RDEAP grant from the Texas A&M Health Science Center to S.E.B. and a Robert A. Welch Foundation grant (C-576) to K.S.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Bondos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Churion, K., Liu, Y., Hsiao, HC., Matthews, K.S., Bondos, S.E. (2014). Measuring Hox-DNA Binding by Electrophoretic Mobility Shift Analysis. In: Graba, Y., Rezsohazy, R. (eds) Hox Genes. Methods in Molecular Biology, vol 1196. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1242-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1242-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1241-4

  • Online ISBN: 978-1-4939-1242-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics