Skip to main content

Quantum Dots for Imaging Neural Cells In Vitro and In Vivo

  • Protocol
  • First Online:
Quantum Dots: Applications in Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1199))

Abstract

Quantum dots (QDs) have been used for optical imaging of neural cells in vitro and in vivo. This chapter lists the basic materials, instrumentation and step-by-step procedures to image live microglia cells and to show the functional and biochemical changes in microglia exposed to QDs. Details are also provided for the real-time imaging of cerebral ischemic lesions in animals and for the assessment of lesion reduction after therapeutic interventions. Microglia are brain cells which detect, internalize, and eliminate particulate matter, thereby maintaining homeostasis in the central nervous system. Although the protocols for imaging microglia shown here are developed for QDs without specific ligands or antibodies, the principles are the same for imaging other QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deisseroth K, Feng G, Majewska AK et al (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26(41):10380–10386

    Article  CAS  Google Scholar 

  2. Hillman EM (2007) Optical brain imaging in vivo: techniques and applications from animal to man. J Biomed Opt 12(5):051402

    Article  Google Scholar 

  3. Walling MA, Novak JA, Shepard JR (2009) Quantum dots for live cell and in vivo imaging. Int J Mol Sci 10(2):441–491

    Article  CAS  Google Scholar 

  4. Maysinger D, Behrendt M, Lalancette-Hebert M, Kriz J (2007) Real-time imaging of astrocyte response to quantum dots: in vivo screening model system for biocompatibility of nanoparticles. Nano Lett 7(8):2513–2520

    Article  CAS  Google Scholar 

  5. Minami SS, Sun B, Popat K et al (2012) Selective targeting of microglia by quantum dots. J Neuroinflamm. doi:10.1186/1742-2094-9-22

    Google Scholar 

  6. Pathak S, Cao E, Davidson MC et al (2006) Quantum dot applications to neuroscience: new tools for probing neurons and glia. J Neurosci 26(7):1893–1895

    Article  CAS  Google Scholar 

  7. Zhang LW, Monteiro-Riviere NA (2009) Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci 110(1):138–155

    Article  CAS  Google Scholar 

  8. Jiang X, Rocker C, Hafner M et al (2010) Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 4(11):6787–6797

    Article  CAS  Google Scholar 

  9. Al-Hajaj NA, Moquin A, Neibert KD et al (2011) Short ligands affect modes of QD uptake and elimination in human cells. ACS Nano 5(6):4909–4918

    Article  CAS  Google Scholar 

  10. Behrendt M, Sandros MG, McKinney RA et al (2009) Imaging and organelle distribution of fluorescent InGaP/ZnS nanoparticles in glial cells. Nanomedicine (Lond) 4(7):747–761

    Article  CAS  Google Scholar 

  11. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    Article  CAS  Google Scholar 

  12. Li L, Daou TJ, Texier I et al (2009) Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem Mater 21(12):2422–2429

    Article  CAS  Google Scholar 

  13. Schaffer BS, Grayson MH, Wortham JM et al (2010) Immune competency of a hairless mouse strain for improved preclinical studies in genetically engineered mice. Mol Cancer Ther 9(8):2354–2364

    Article  CAS  Google Scholar 

  14. Klohs J, Rudin M (2011) Unveiling molecular events in the brain by noninvasive imaging. Neuroscientist 17(5):539–559

    Article  CAS  Google Scholar 

  15. Vermeer SE, Longstreth WT Jr, Koudstaal PJ (2007) Silent brain infarcts: a systematic review. Lancet Neurol 6(7):611–619

    Article  Google Scholar 

  16. Liebeskind DS (2009) Imaging the future of stroke: I. Ischemia. Ann Neurol 66(5):574–590

    Article  Google Scholar 

  17. Choi AO, Maysinger D (2013) Intranasal fluorescent nanocrystals for longitudinal in vivo evaluation of cerebral microlesions. Pharm Nanotechnol 1(2):93–104

    Article  CAS  Google Scholar 

  18. Maysinger D, Piccardo P, Liberini P et al (1994) Encapsulated genetically engineered fibroblasts: release of nerve growth factor and effects in vivo on recovery of cholinergic markers after devascularizing cortical lesions. Neurochem Int 24(5):495–503

    Article  CAS  Google Scholar 

  19. Paxinos G, Franklin KBJ (2012) Paxinos and Franklin's the mouse brain in stereotaxic coordinates, 4th edn. Academic Press, Whaltham, MA

    Google Scholar 

  20. Walkey CD, Olsen JB, Guo H et al (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134(4):2139–2147

    Article  CAS  Google Scholar 

  21. Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41(7):2780–2799

    Article  CAS  Google Scholar 

  22. Tenzer S, Docter D, Rosfa S et al (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5(9):7155–7167

    Article  CAS  Google Scholar 

  23. Cedervall T, Lynch I, Lindman S et al (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7):2050–2055

    Article  CAS  Google Scholar 

  24. Lundqvist M, Stigler J, Elia G et al (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105(38):14265–14270

    Article  CAS  Google Scholar 

  25. Lundqvist M, Stigler J, Cedervall T et al (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5(9):7503–7509

    Article  CAS  Google Scholar 

  26. Casals E, Pfaller T, Duschl A et al (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4(7):3623–3632

    Article  CAS  Google Scholar 

  27. Moquin A, Winnik FM, Maysinger D (2013) Separation science: principles and applications for the analysis of bionanoparticles by asymmetrical flow field-flow fractionation (AF4). Methods Mol Biol 991:325–341

    Article  CAS  Google Scholar 

  28. Stansley B, Post J, Hensley K (2012) A comparative review of cell culture systems for the study of microglial biology in Alzheimer's disease. J Neuroinflamm. doi:10.1186/1742-2094-9-115

    Google Scholar 

  29. Maysinger D, Lovric J, Eisenberg A, Savic R (2007) Fate of micelles and quantum dots in cells. Eur J Pharm Biopharm 65(3):270–281

    Article  CAS  Google Scholar 

  30. Duncan R, Richardson SC (2012) Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm 9(9):2380–2402

    Article  CAS  Google Scholar 

  31. Iversen T, Skotland T, Sandvig K (2011) Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6(2):176–185

    Article  CAS  Google Scholar 

  32. Muro S (2012) Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release 164(2):125–137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from CIHR (119425) and NSERC (strategic). AOC was supported by an FRSQ doctoral award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dusica Maysinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Choi, A.O., Neibert, K.D., Maysinger, D. (2014). Quantum Dots for Imaging Neural Cells In Vitro and In Vivo. In: Fontes, A., Santos, B. (eds) Quantum Dots: Applications in Biology. Methods in Molecular Biology, vol 1199. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1280-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1280-3_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1279-7

  • Online ISBN: 978-1-4939-1280-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics