Skip to main content

Computational Studies on Conformation, Electron Density Distributions, and Antioxidant Properties of Anthocyanidins

  • Protocol
  • First Online:
Advanced Protocols in Oxidative Stress III

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1208))

Abstract

Computational studies carried out at density functional theory levels are able to provide reliable chemical information about medium sized compounds as anthocyanins and their aglycons (anthocyanidins). Thus, they indicate that the most stable tautomers in aqueous solution for the main anthocyanidins (excluding pelargonidin) are deprotonated at C4′ in the neutral forms, while deprotonations at C5 and C4′ characterize the most stable anions in solution. QTAIM electron density analysis (overviewed in brief in the methods section) shows that Lewis structures usually employed give rise to unreliable atomic charges. Thus: (1) The positive charge spreads throughout the whole cation, and is not localized on any specific atom or set of atoms; (2) Neutral forms can be described as enolates where the negative charge is counterbalanced in a different way to that indicated by the typical resonance forms; and (3) The negative charge of anions is mainly spread among three regions of the molecule: the two deprotonated sites and the C9-O1-C2 area. The analysis of a group of complexes formed by a model of cyanin with four common metalic cations (Mg(II), Al(II), Cu(II), Zn(II)), shows: (1) the preference for tetracoordination in Zn(II) and Cu(II) complexes, (2) higher affinity for Cu(II) than for the other metals here studied, and (3) the distortion of electron density in the cyanin ligand affects the whole molecule. This distortion can be described as a continuous polarization where, even, in some cases, the atomic electron populations of those atoms of the ligand that are more directly involved in bonding to the metal increase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haslam E (1998) Practical polyphenolics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  2. Wallace TC (2011) Anthocyanins in cardiovascular disease. Adv Nutr 2:1–7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Meiers S, Kemény M, Weyand U et al (2001) The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. J Agric Food Chem 49:958–962

    Article  PubMed  CAS  Google Scholar 

  4. Nichenametla SN, Taruscio TG, Barney DL et al (2006) A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr 46:161–183

    Article  PubMed  CAS  Google Scholar 

  5. Castañeda-Ovando A, Pacheco-Hernández ML, Páez-Hernández ME et al (2009) Chemical studies on anthocyanins. Food Chem 113:859–871

    Article  Google Scholar 

  6. Sakakibara H, Ashida H, Kanazawa K (2002) Simultaneous determination of all polyphenols in vegetables, fruits, and teas. Free Radical Res 36:307–316

    Article  CAS  Google Scholar 

  7. Estévez L, Mosquera RA (2009) Conformational and substitution effects on the electron distribution in a series of anthocyanidins. J Phys Chem A 113:9908–9919

    Article  PubMed  Google Scholar 

  8. Estévez L, Mosquera RA (2008) Where is the positive charge of flavylium cations? Chem Phys Lett 451:121–126

    Article  Google Scholar 

  9. Shiono M, Matsugaki N, Takeda K (2005) Structure of the blue cornflower pigment. Nature 436:791

    Article  PubMed  CAS  Google Scholar 

  10. Kondo T, Ueda M, Isobe M et al (1998) A new molecular mechanism of blue color development with protocyanin, a supramolecular pigment from cornflower, Centaurea cyanus. Tetrahedron Lett 39:8307–8310

    Article  CAS  Google Scholar 

  11. Marković JMD, Veselinović DS, Baranac JM et al (2008) Spectroscopic and theoretical study of cyanidin–aluminum (III) complexes. Spectrosc Lett 41:104–115

    Article  Google Scholar 

  12. Estévez L, Otero N, Mosquera RA (2011) Molecular structure of cyanidin metal complexes: Al(III) versus Mg(II). Theor Chem Acc 128:485–495

    Article  Google Scholar 

  13. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and applications to major families of antioxidants. J Am Chem Soc 123:1173–1183

    Article  PubMed  CAS  Google Scholar 

  14. Estévez L, Otero N, Mosquera RA (2010) A computational study on the acidity dependence of radical-scavenging mechanisms of anthocyanidins. J Phys Chem B 114:9706–9712

    Article  PubMed  Google Scholar 

  15. Tomasi J, Menucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  PubMed  CAS  Google Scholar 

  16. Bader RFW (1990) Atoms in molecules – a quantum theory. Oxford University Press, New York, USA

    Google Scholar 

  17. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB et al. (2004) Gaussian 03, Revision E.01. Gaussian Inc., Wallingford CT, USA

    Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB et al. (2009) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford CT, USA

    Google Scholar 

  20. Bader RFW (1995) AIMPAC: a suite of programs for the theory of atoms in molecules. McMaster University, Hamilton, ON, Canada. http://www.chemistry.mcmaster.ca/aimpac/download/download.htm

  21. Biegler-König F, Schönbohm J, Bayles D (2001) AIM2000 – a program to analyze and visualize atoms in molecules. J Comp Chem 22:545–559

    Article  Google Scholar 

  22. Klyne W, Prelog V (1960) Description of steric relationships across single bonds. Experientia 16:521–523

    Article  CAS  Google Scholar 

  23. Rezabal E, Mercero JM, Lopez X et al (2007) A theoretical study of the principles regulating the specificity for Al(III) against Mg(II) in protein cavities. J Inorg Biochem 101:1192–1200

    Article  PubMed  CAS  Google Scholar 

  24. Estévez L, Mosquera RA (2007) A density functional study of pelargonidin. J Phys Chem A 111:11100–11109

    Article  PubMed  Google Scholar 

  25. Estévez L, Mosquera RA (2008) Molecular structure and antioxidant properties of delphinidin. J Phys Chem A 112:10614–10623

    Article  PubMed  Google Scholar 

  26. Deeth RJ, Randell K (2008) Ligand field stabilization and activation energies revisited: molecular modeling of the thermodynamic and kinetic properties of divalent, first-row aqua complexes. Inorg Chem 47:7377–7388

    Article  PubMed  CAS  Google Scholar 

  27. Esparza I, Santamaría C, García-Mina JM et al (2007) Complexing capacity profiles of naturally occurring ligands in tempranillo wines for Cu and Zn. An electroanalytical approach for cupric casse. Anal Chim Acta 599:67–75

    Article  PubMed  CAS  Google Scholar 

  28. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–556

    Article  CAS  Google Scholar 

  29. Mandado M, Vila A, Graña AM et al (2003) Transferability of energies of atoms in organic molecules. Chem Phys Lett 371:739–743

    Article  CAS  Google Scholar 

  30. Cortes-Guzmán F, Bader RFW (2003) Transferability of group energies and satisfaction of the virial theorem. Chem Phys Lett 379:183–192

    Article  Google Scholar 

  31. Lehd M, Jensen FJ (1991) A general procedure for obtaining wave functions obeying the virial theorem. J Comput Chem 12:1089–1096

    Article  CAS  Google Scholar 

  32. Graña AM, Mosquera RA (1999) The transferability of the carbonyl group in aldehydes and ketones. J Chem Phys 110:6606–6616

    Article  Google Scholar 

  33. González Moa M, Mandado M, Mosquera RA (2006) Eplaining the sequence of protonation affinities of cytosine with QTAIM. Chem Phys Lett 428:255–261

    Article  Google Scholar 

  34. Ferro-Costas D, Mosquera RA (2013) Influence of the O-protonation in the O=C–O–Me Z preference. A QTAIM study. J Phys Chem A 117:257–265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank “Centro de Supercomputación de Galicia” (CESGA) for free access to its computational facilities, and financial support from Spanish Ministry of Economy through research project CTQ2010-21500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Mosquera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mosquera, R.A., Estévez, L., Bugarín, M.G. (2015). Computational Studies on Conformation, Electron Density Distributions, and Antioxidant Properties of Anthocyanidins. In: Armstrong, D. (eds) Advanced Protocols in Oxidative Stress III. Methods in Molecular Biology, vol 1208. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1441-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1441-8_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1440-1

  • Online ISBN: 978-1-4939-1441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics