Skip to main content

Epigenetic Regulation in Biopsychosocial Pathways

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1238))

Abstract

Theory and empirical evidence suggest that psychological stress and other adverse psychosocial experiences can contribute to cancer progression. Research has begun to explore the potential role of epigenetic changes in these pathways. In basic, animal and human models, exposure to stressors or to the products of the physiological stress response (e.g., cortisol) has been associated with epigenetic changes, such as DNA methylation and microRNA (miR) expression, which may influence tumor growth, progression, metastasis, or chemoresistance. However, the specific biological pathways linking stress, epigenetic changes, and cancer outcomes remain unclear. Numerous opportunities exist to extend the preliminary evidence for the role of epigenetic mechanisms in the biopsychosocial pathways contributing to cancer progression. Such work will improve our understanding of how the psychosocial environment influences cancer risk and survival, potentially leading to improved prevention and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Interestingly, maltreated children tended to have elevated methylation levels at sites that had low to moderate methylation, but reduced methylation levels at sites that typically had high methylation, suggesting that maltreatment may contribute to a “flattened” or less variable global methylation pattern.

  2. 2.

    Methylation levels of Alu, LINE-1, and Sat2 are correlated with overall DNA methylation [58] and are therefore used as markers of global methylation levels, although they are not always highly correlated and may interrogate different cellular processes [57].

  3. 3.

    Interestingly, socially isolated mice in this study were actually less likely to develop mammary tumors, possibly because social isolation was associated with less well-developed mammary tissue [85]. Future work is needed to replicate and extend these findings among mice with normative mammary tissue development, and in humans.

References

  1. Costanzo ES, Sood AK, Lutgendorf SK (2011) Biobehavioral influences on cancer progression. Immunol Allergy Clin North Am 31(1):109–132

    PubMed Central  PubMed  Google Scholar 

  2. Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C et al (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12(8):939–944

    CAS  PubMed  Google Scholar 

  3. Volden PA, Conzen SD (2013) The influence of glucocorticoid signaling on tumor progression. Brain Behav Immun 30(Suppl):S26–S31

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Moreno-Smith M, Lutgendorf SK, Sood AK (2010) Impact of stress on cancer metastasis. Future Oncol 6(12):1863–1881

    PubMed Central  PubMed  Google Scholar 

  5. Yao H, Duan Z, Wang M, Awonuga AO, Rappolee D, Xie Y (2009) Adrenaline induces chemoresistance in HT-29 colon adenocarcinoma cells. Cancer Genet Cytogenet 190(2):81–87

    CAS  PubMed  Google Scholar 

  6. Pu J, Bai D, Yang X, Lu X, Xu L, Lu J (2012) Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155. Biochem Biophys Res Commun 428(2):210–215

    CAS  PubMed  Google Scholar 

  7. Su F, Ouyang N, Zhu P, Ouyang N, Jia W, Gong C et al (2005) Psychological stress induces chemoresistance in breast cancer by upregulating mdr1. Biochem Biophys Res Commun 329(3):888–897

    CAS  PubMed  Google Scholar 

  8. Hassan S, Karpova Y, Baiz D, Yancey D, Pullikuth A, Flores A et al (2013) Behavioral stress accelerates prostate cancer development in mice. J Clin Invest 123(2):874–886

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury M (2008) A navigator for human genome epidemiology. Nat Genet 40(2):124, Accessed 01/09/2014

    CAS  PubMed  Google Scholar 

  10. Mahon PB, Zandi PP, Potash JB, Nestadt G, Wand GS (2013) Genetic association of FKBP5 and CRHR1 with cortisol response to acute psychosocial stress in healthy adults. Psychopharmacology (Berl) 227(2):231–241

    CAS  Google Scholar 

  11. Blomeyer D, Buchmann A, Lascorz J, Zimmermann U, Esser G, Desrivieres S et al (2013) Association of PER2 genotype and stressful life events with alcohol drinking in young adults. PLoS One 8(3):e59136

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Reinelt E, Stopsack M, Aldinger M, John U, Grabe H, Barnow S (2013) Testing the diathesis-stress model: 5-HTTLPR, childhood emotional maltreatment, and vulnerability to social anxiety disorder. Am J Med Genet B Neuropsychiatr Genet 162B(3):253–261

    PubMed  Google Scholar 

  13. Jiang R, Brummett B, Hauser E, Babyak M, Siegler I, Singh A et al (2013) Chronic family stress moderates the association between a TOMM40 variant and triglyceride levels in two independent caucasian samples. Biol Psychol 93(1):184–189

    PubMed Central  PubMed  Google Scholar 

  14. Holman E (2012) Acute stress and cardiovascular health: is there an ACE gene connection? J Trauma Stress 25(5):592–597

    PubMed  Google Scholar 

  15. Savas S, Hyde A, Stuckless SN, Parfrey P, Younghusband HB, Green R (2012) Serotonin transporter gene (SLC6A4) variations are associated with poor survival in colorectal cancer patients. PLoS One 7(7):e38953

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Zannas AS, West AE (2013) Epigenetics and the regulation of stress vulnerability and resilience. Neuroscience 264:157–170

    PubMed  Google Scholar 

  17. Lazarus RS, Folkman S (1984) Stress, appraisal, and coping. Springer, New York

    Google Scholar 

  18. Weiner H (1992) Perturbing the organism: the biology of stressful experience. University of Chicago Press, Chicago

    Google Scholar 

  19. Kemeny ME (2003) The psychobiology of stress. Curr Dir Psychol Sci 12(4):124–129

    Google Scholar 

  20. McEwen BS (1998) Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci 840:33–44

    CAS  PubMed  Google Scholar 

  21. Russ TC, Stamatakis E, Hamer M, Starr JM, Kivimaki M, Batty GD (2012) Association between psychological distress and mortality: individual participant pooled analysis of 10 prospective cohort studies. BMJ 345:e4933

    PubMed Central  PubMed  Google Scholar 

  22. Hoodin F, Uberti JP, Lynch TJ, Steele P, Ratanatharathorn V (2006) Do negative or positive emotions differentially impact mortality after adult stem cell transplant? Bone Marrow Transplant 38(4):255–264

    CAS  PubMed  Google Scholar 

  23. Costanzo ES, Juckett MB, Coe CL (2013) Biobehavioral influences on recovery following hematopoietic stem cell transplantation. Brain Behav Immun 30(Suppl):S68–S74

    PubMed Central  PubMed  Google Scholar 

  24. Antoni MH, Lutgendorf SK, Cole SW, Dhabhar FS, Sephton SE, McDonald PG et al (2006) The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer 6(3):240–248

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Antonova L, Aronson K, Mueller CR (2011) Stress and breast cancer: from epidemiology to molecular biology. Breast Cancer Res 13(2):208

    PubMed Central  PubMed  Google Scholar 

  26. Chida Y, Hamer M, Wardle J, Steptoe A (2008) Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol 5(8):466–475

    PubMed  Google Scholar 

  27. Coker AL, Sanderson M, Ellison GL, Fadden MK (2006) Stress, coping, social support, and prostate cancer risk among older African American and Caucasian men. Ethn Dis 16(4):978–987

    PubMed  Google Scholar 

  28. Ellison GL, Coker AL, Hebert JR, Sanderson SM, Royal CD, Weinrich SP (2001) Psychosocial stress and prostate cancer: a theoretical model. Ethn Dis 11(3):484–495

    CAS  PubMed  Google Scholar 

  29. Buccheri G (1998) Depressive reactions to lung cancer are common and often followed by a poor outcome. Eur Respir J 11(1):173–178

    CAS  PubMed  Google Scholar 

  30. Fawzy FI, Canada AL, Fawzy NW (2003) Malignant melanoma: effects of a brief, structured psychiatric intervention on survival and recurrence at 10-year follow-up. Arch Gen Psychiatry 60(1):100–103

    PubMed  Google Scholar 

  31. Fawzy FI, Fawzy NW, Hyun CS, Elashoff R, Guthrie D, Fahey JL et al (1993) Malignant melanoma. Effects of an early structured psychiatric intervention, coping, and affective state on recurrence and survival 6 years later. Arch Gen Psychiatry 50(9):681–689

    CAS  PubMed  Google Scholar 

  32. Yang EV, Eubank TD (2013) The impact of adrenergic signaling in skin cancer progression: Possible repurposing of β-blockers for treatment of skin cancer. Cancer Biomark 13(3):155–160

    PubMed  Google Scholar 

  33. Kuchler T, Henne-Bruns D, Rappat S, Graul J, Holst K, Williams JI et al (1999) Impact of psychotherapeutic support on gastrointestinal cancer patients undergoing surgery: survival results of a trial. Hepatogastroenterology 46(25):322–335

    CAS  PubMed  Google Scholar 

  34. Steel JL, Geller DA, Gamblin TC, Olek MC, Carr BI (2007) Depression, immunity, and survival in patients with hepatobiliary carcinoma. J Clin Oncol 25(17):2397–2405

    PubMed  Google Scholar 

  35. Telepak LC, Jensen SE, Dodd SM, Morgan LS, Pereira DB (2013) Psychosocial factors and mortality in women with early stage endometrial cancer. Br J Health Psychol. doi:10.1111/bjhp.12070 [Epub ahead of print]

    PubMed Central  PubMed  Google Scholar 

  36. Lamkin DM, Sloan EK, Patel AJ, Chiang BS, Pimentel MA, Ma JC et al (2012) Chronic stress enhances progression of acute lymphoblastic leukemia via beta-adrenergic signaling. Brain Behav Immun 26(4):635–641

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Powell ND, Tarr AJ, Sheridan JF (2013) Psychosocial stress and inflammation in cancer. Brain Behav Immun 30(Suppl):S41–S47

    CAS  PubMed  Google Scholar 

  38. Sarkar DK, Murugan S, Zhang C, Boyadjieva N (2012) Regulation of cancer progression by beta-endorphin neuron. Cancer Res 72(4):836–840

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Lutgendorf SK, Sood AK (2011) Biobehavioral factors and cancer progression: physiological pathways and mechanisms. Psychosom Med 73(9):724–730

    PubMed Central  PubMed  Google Scholar 

  40. Thaker PH, Lutgendorf SK, Sood AK (2007) The neuroendocrine impact of chronic stress on cancer. Cell Cycle 6(4):430–433

    CAS  PubMed  Google Scholar 

  41. Williams JB, Pang D, Delgado B, Kocherginsky M, Tretiakova M, Krausz T et al (2009) A model of gene-environment interaction reveals altered mammary gland gene expression and increased tumor growth following social isolation. Cancer Prev Res (Phila) 2(10):850–861

    CAS  Google Scholar 

  42. Hermes GL, Delgado B, Tretiakova M, Cavigelli SA, Krausz T, Conzen SD et al (2009) Social isolation dysregulates endocrine and behavioral stress while increasing malignant burden of spontaneous mammary tumors. Proc Natl Acad Sci U S A 106(52):22393–22398

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Jones PA (2005) Overview of cancer epigenetics. Semin Hematol 42(3 Suppl 2):S3–S8

    CAS  PubMed  Google Scholar 

  44. Verma M, Rogers S, Divi RL, Scully SD, Nelson S, Su LJ et al (2014) Epigenetic research in cancer epidemiology: trends, opportunities, and challenges. Cancer Epidemiol Biomarkers Prev 23(2):223–233

    PubMed  Google Scholar 

  45. Feinberg AP (2004) The epigenetics of cancer etiology. Semin Cancer Biol 14(6):427–432

    CAS  PubMed  Google Scholar 

  46. Kelly-Irving M, Mabile L, Grosclaude P, Lang T, Delpierre C (2013) The embodiment of adverse childhood experiences and cancer development: potential biological mechanisms and pathways across the life course. Int J Public Health 58(1):3–11

    PubMed  Google Scholar 

  47. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854

    CAS  PubMed  Google Scholar 

  48. Bick J, Naumova O, Hunter S, Barbot B, Lee M, Luthar SS et al (2012) Childhood adversity and DNA methylation of genes involved in the hypothalamus-pituitary-adrenal axis and immune system: whole-genome and candidate-gene associations. Dev Psychopathol 24(4):1417–1425

    PubMed Central  PubMed  Google Scholar 

  49. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM (2008) Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3(2):97–106

    PubMed  Google Scholar 

  50. Shi M, Du L, Liu D, Qian L, Hu M, Yu M et al (2012) Glucocorticoid regulation of a novel HPV-E6-p53-miR-145 pathway modulates invasion and therapy resistance of cervical cancer cells. J Pathol 228(2):148–157

    CAS  PubMed  Google Scholar 

  51. Sachdeva M, Mo YY (2010) miR-145-mediated suppression of cell growth, invasion and metastasis. Am J Transl Res 2(2):170–180

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 1792(6):497–505

    CAS  PubMed  Google Scholar 

  53. Yang BZ, Zhang H, Ge W, Weder N, Douglas-Palumberi H, Perepletchikova F et al (2013) Child abuse and epigenetic mechanisms of disease risk. Am J Prev Med 44(2):101–107

    PubMed Central  PubMed  Google Scholar 

  54. McGuinness D, McGlynn LM, Johnson PC, MacIntyre A, Batty GD, Burns H et al (2012) Socio-economic status is associated with epigenetic differences in the pSoBid cohort. Int J Epidemiol 41(1):151–160

    PubMed  Google Scholar 

  55. Palumbo JS, Kombrinck KW, Drew AF, Grimes TS, Kiser JH, Degen JL et al (2000) Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 96(10):3302–3309

    CAS  PubMed  Google Scholar 

  56. Lesina M, Kurkowski MU, Ludes K, Rose-John S, Treiber M, Kloppel G et al (2011) Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19(4):456–469

    CAS  PubMed  Google Scholar 

  57. Subramanyam MA, Diez-Roux AV, Pilsner JR, Villamor E, Donohue KM, Liu Y et al (2013) Social factors and leukocyte DNA methylation of repetitive sequences: the multi-ethnic study of atherosclerosis. PLoS One 8(1):e54018

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E et al (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33(21):6823–6836

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Bollati V, Baccarelli A, Sartori S, Tarantini L, Motta V, Rota F et al (2010) Epigenetic effects of shiftwork on blood DNA methylation. Chronobiol Int 27(5):1093–1104

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Tehranifar P, Wu HC, Fan X, Flom JD, Ferris JS, Cho YH et al (2013) Early life socioeconomic factors and genomic DNA methylation in mid-life. Epigenetics 8(1):23–27

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Borghol N, Suderman M, McArdle W, Racine A, Hallett M, Pembrey M et al (2012) Associations with early-life socio-economic position in adult DNA methylation. Int J Epidemiol 41(1):62–74

    PubMed Central  PubMed  Google Scholar 

  62. Gidron Y, De Zwaan M, Quint K, Ocker M (2010) Influence of stress and health-behaviour on miRNA expression. Mol Med Rep 3(3):455–457

    CAS  PubMed  Google Scholar 

  63. Jerome T, Laurie P, Louis B, Pierre C (2007) Enjoy the silence: the story of let-7 microRNA and cancer. Curr Genomics 8(4):229–233

    PubMed Central  PubMed  Google Scholar 

  64. Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH et al (2008) MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 14(9):2690–2695

    CAS  PubMed  Google Scholar 

  65. Hunter RG, McEwen BS (2013) Stress and anxiety across the lifespan: structural plasticity and epigenetic regulation. Epigenomics 5(2):177–194

    CAS  PubMed  Google Scholar 

  66. Cole SW, Sood AK (2012) Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res 18(5):1201–1206

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Wu W, Chaudhuri S, Brickley DR, Pang D, Karrison T, Conzen SD (2004) Microarray analysis reveals glucocorticoid-regulated survival genes that are associated with inhibition of apoptosis in breast epithelial cells. Cancer Res 64(5):1757–1764

    CAS  PubMed  Google Scholar 

  68. Mitra SP, Carraway RE (1999) Synergistic effects of neurotensin and beta-adrenergic agonist on 3,5-cyclic adenosine monophosphate accumulation and DNA synthesis in prostate cancer PC3 cells. Biochem Pharmacol 57(12):1391–1397

    CAS  PubMed  Google Scholar 

  69. Lutgendorf SK, Cole S, Costanzo E, Bradley S, Coffin J, Jabbari S et al (2003) Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res 9(12):4514–4521

    CAS  PubMed  Google Scholar 

  70. Nagmani R, Pasco DS, Salas RD, Feller DR (2003) Evaluation of beta-adrenergic receptor subtypes in the human prostate cancer cell line-LNCaP. Biochem Pharmacol 65(9):1489–1494

    CAS  PubMed  Google Scholar 

  71. Palm D, Lang K, Niggemann B, Drell TL IV, Masur K, Zaenker KS et al (2006) The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by beta-blockers. Int J Cancer 118(11):2744–9

    CAS  PubMed  Google Scholar 

  72. Ramos-Jimenez J, Soria-Jasso LE, Lopez-Colombo A, Reyes-Esparza JA, Camacho J, Arias-Montano JA (2007) Histamine augments beta2-adrenoceptor-induced cyclic AMP accumulation in human prostate cancer cells DU-145 independently of known histamine receptors. Biochem Pharmacol 73(6):814–823

    CAS  PubMed  Google Scholar 

  73. Sastry KS, Karpova Y, Prokopovich S, Smith AJ, Essau B, Gersappe A et al (2007) Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J Biol Chem 282(19):14094–14100

    CAS  PubMed  Google Scholar 

  74. Badino GR, Novelli A, Girardi C, Di Carlo F (1996) Evidence for functional beta-adrenoceptor subtypes in CG-5 breast cancer cell. Pharmacol Res 33(4–5):255–260

    CAS  PubMed  Google Scholar 

  75. Vandewalle B, Revillion F, Lefebvre J (1990) Functional beta-adrenergic receptors in breast cancer cells. J Cancer Res Clin Oncol 116(3):303–306

    CAS  PubMed  Google Scholar 

  76. Marchetti B, Spinola PG, Pelletier G, Labrie F (1991) A potential role for catecholamines in the development and progression of carcinogen-induced mammary tumors: hormonal control of beta-adrenergic receptors and correlation with tumor growth. J Steroid Biochem Mol Biol 38(3):307–320

    CAS  PubMed  Google Scholar 

  77. Rangarajan S, Enserink JM, Kuiperij HB, de Rooij J, Price LS, Schwede F et al (2003) Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the beta 2-adrenergic receptor. J Cell Biol 160(4):487–493

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Enserink JM, Price LS, Methi T, Mahic M, Sonnenberg A, Bos JL et al (2004) The cAMP-Epac-Rap1 pathway regulates cell spreading and cell adhesion to laminin-5 through the alpha3beta1 integrin but not the alpha6beta4 integrin. J Biol Chem 279(43):44889–44896

    CAS  PubMed  Google Scholar 

  79. Drell TL, Joseph J, Lang K, Niggemann B, Zaenker KS, Entschladen F (2003) Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res Treat 80(1):63–70

    CAS  PubMed  Google Scholar 

  80. Lang K, Drell TL Jr, Lindecke A, Niggemann B, Kaltschmidt C, Zaenker KS et al (2004) Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int J Cancer 112(2):231–238

    CAS  PubMed  Google Scholar 

  81. Masur K, Niggemann B, Zanker KS, Entschladen F (2001) Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by beta-blockers. Cancer Res 61(7):2866–2869

    CAS  PubMed  Google Scholar 

  82. Sood AK, Bhatty R, Kamat AA, Landen CN, Han L, Thaker PH et al (2006) Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res 12(2):369–375

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Conradt E, Lester BM, Appleton AA, Armstrong DA, Marsit CJ (2013) The role of DNA methylation of NR3C1 and 11beta-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics 8(12):1321–1329

    CAS  PubMed  Google Scholar 

  84. Harris A, Seckl J (2011) Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 59(3):279–289

    CAS  PubMed  Google Scholar 

  85. Hasen NS, O'Leary KA, Auger AP, Schuler LA (2010) Social isolation reduces mammary development, tumor incidence, and expression of epigenetic regulators in wild-type and p53-heterozygotic mice. Cancer Prev Res (Phila) 3(5):620–629

    CAS  Google Scholar 

  86. Roa J, Vigo E, Castellano JM, Navarro VM, Fernandez-Fernandez R, Casanueva FF et al (2006) Hypothalamic expression of KiSS-1 system and gonadotropin-releasing effects of kisspeptin in different reproductive states of the female Rat. Endocrinology 147(6):2864–2878

    CAS  PubMed  Google Scholar 

  87. Murphy KG (2005) Kisspeptins: regulators of metastasis and the hypothalamic-pituitary-gonadal axis. J Neuroendocrinol 17(8):519–525

    CAS  PubMed  Google Scholar 

  88. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    CAS  PubMed  Google Scholar 

  89. Mathews HL, Konley T, Kosik KL, Krukowski K, Eddy J, Albuquerque K et al (2011) Epigenetic patterns associated with the immune dysregulation that accompanies psychosocial distress. Brain Behav Immun 25(5):830–839

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Shahzad MM, Arevalo JM, Armaiz-Pena GN, Lu C, Stone RL, Moreno-Smith M et al (2010) Stress effects on FosB- and interleukin-8 (IL8)-driven ovarian cancer growth and metastasis. J Biol Chem 285(46):35462–35470

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Peters S, Grunwald N, Rummele P, Endlicher E, Lechner A, Neumann ID et al (2012) Chronic psychosocial stress increases the risk for inflammation-related colon carcinogenesis in male mice. Stress 15(4):403–415

    CAS  PubMed  Google Scholar 

  93. Sanchez P, Torres JM, Castro B, Olmo A, del Moral RG, Ortega E (2013) Expression of steroid 5alpha-reductase isozymes in prostate of adult rats after environmental stress. FEBS J 280(1):93–101

    CAS  PubMed  Google Scholar 

  94. Saul AN, Oberyszyn TM, Daugherty C, Kusewitt D, Jones S, Jewell S et al (2005) Chronic stress and susceptibility to skin cancer. J Natl Cancer Inst 97(23):1760–1767

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Antonova L, Mueller CR (2008) Hydrocortisone down-regulates the tumor suppressor gene BRCA1 in mammary cells: a possible molecular link between stress and breast cancer. Genes Chromosomes Cancer 47(4):341–352

    CAS  PubMed  Google Scholar 

  96. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134(5):703–707

    CAS  PubMed  Google Scholar 

  97. Lutgendorf SK, DeGeest K, Sung CY, Arevalo JM, Penedo F, Lucci J 3rd et al (2009) Depression, social support, and beta-adrenergic transcription control in human ovarian cancer. Brain Behav Immun 23(2):176–183

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Pipkin ME, Lichtenheld MG (2006) A reliable method to display authentic DNase I hypersensitive sites at long-ranges in single-copy genes from large genomes. Nucleic Acids Res 34(4):e34

    PubMed Central  PubMed  Google Scholar 

  99. Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, Davis S et al (2006) Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res 16(1):123–131

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Negre N, Lavrov S, Hennetin J, Bellis M, Cavalli G (2006) Mapping the distribution of chromatin proteins by ChIP on chip. Methods Enzymol 410:316–341

    CAS  PubMed  Google Scholar 

  101. Barrilleaux BL, Cotterman R, Knoepfler PS (2013) Chromatin immunoprecipitation assays for Myc and N-Myc. Methods Mol Biol 1012:117–133

    PubMed  Google Scholar 

  102. Lickwar CR, Mueller F, Lieb JD (2013) Genome-wide measurement of protein-DNA binding dynamics using competition ChIP. Nat Protoc 8(7):1337–1353

    PubMed  Google Scholar 

  103. Jensen K, Brusletto BS, Aass HC, Olstad OK, Kierulf P, Gautvik KM (2013) Transcriptional profiling of mRNAs and microRNAs in human bone marrow precursor B cells identifies subset- and age-specific variations. PLoS One 8(7):e70721

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Buermans HP, Ariyurek Y, van Ommen G, den Dunnen JT, t Hoen PA (2010) New methods for next generation sequencing based microRNA expression profiling. BMC Genomics 11:716

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Mraz M, Pospisilova S, Malinova K, Slapak I, Mayer J (2009) MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk Lymphoma 50(3):506–509

    CAS  PubMed  Google Scholar 

  106. Terry MB, Delgado-Cruzata L, Vin-Raviv N, Wu HC, Santella RM (2011) DNA methylation in white blood cells: association with risk factors in epidemiologic studies. Epigenetics 6(7):828–837

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL et al (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5(8):e1000602

    PubMed Central  PubMed  Google Scholar 

  108. Huang WY, Su LJ, Hayes RB, Moore LE, Katki HA, Berndt SI et al (2012) Prospective study of genomic hypomethylation of leukocyte DNA and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 21(11):2014–2021

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Frigola J, Sole X, Paz MF, Moreno V, Esteller M, Capella G et al (2005) Differential DNA hypermethylation and hypomethylation signatures in colorectal cancer. Hum Mol Genet 14(2):319–326

    CAS  PubMed  Google Scholar 

  110. Brennan K, Flanagan JM (2012) Is there a link between genome-wide hypomethylation in blood and cancer risk? Cancer Prev Res (Phila) 5(12):1345–1357

    CAS  Google Scholar 

  111. Sakai RR, Tamashiro KL (2005) Social hierarchy and stress. In: Steckler T, Kalin N, Reul J (eds) Handbook of stress and the brain. Elsevier, Amsterdam, pp 113–132

    Google Scholar 

  112. Witt W, Litzelman K, Cheng E, Wakeel F, Barker E (2014) Measuring stress before and during pregnancy: a review of population-based studies of obstetric outcomes. Matern Child Health J 18(1):52–63

    PubMed  Google Scholar 

  113. Cohen S, Kessler RC, Gordon LU (1995) Strategies for measuring stress in studies of psychiatric and physical disorders. In: Measuring stress: a guide for health and social scientists. Oxford University Press, New York, pp 3–26

    Google Scholar 

  114. Cohen S, MacArthur Foundation Psychosocial Working Group (2000) Psychosocial notebook. Retrieved January 9, 2014, from http://www.macses.ucsf.edu/research/psychosocial/stress.php

  115. Swogger SE (2013) PsycTESTS. JMLA 101(3):234

    PubMed Central  Google Scholar 

  116. National Cancer Institute (2013) GEM: grid-enabled measures database (Beta). Retrieved January 9, 2014, from www.gem-beta.org

  117. Kirschbaum C, Pirke K, Hellhammer D (1993) The ‘Trier Social Stress Test’—a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28(1–2):76

    CAS  PubMed  Google Scholar 

  118. Lovallo W (1975) The cold pressor test and autonomic function: a review and integration. Psychophysiology 12(3):268–282

    CAS  PubMed  Google Scholar 

  119. Traustadottir T, Bosch P, Matt K (2003) Gender differences in cardiovascular and hypothalamic-pituitary-adrenal axis responses to psychological stress in healthy older adult men and women. Stress 6(2):133–140

    CAS  PubMed  Google Scholar 

  120. Roseboom TJ, Van Der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP (2001) Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol 185(1):93–98

    CAS  PubMed  Google Scholar 

  121. Eskenazi B, Marks A, Catalano R, Bruckner T, Toniolo P (2007) Low birthweight in New York City and upstate New York following the events of September 11th. Hum Reprod 22(11):3013

    PubMed  Google Scholar 

  122. Holman EA, Silver RC, Poulin M, Andersen J, Gil-Rivas V, McIntosh DN (2008) Terrorism, acute stress, and cardiovascular health: a 3-year national study following the September 11th attacks. Arch Gen Psychiatry 65(1):73

    PubMed  Google Scholar 

  123. Lyon D, Elmore L, Aboalela N, Merrill-Schools J, McCain N, Starkweather A et al (2014) Potential epigenetic mechanism(s) associated with the persistence of psychoneurological symptoms in women receiving chemotherapy for breast cancer: a hypothesis. Biol Res Nurs 16(2):160–174

    PubMed Central  PubMed  Google Scholar 

  124. Pyter LM, Pineros V, Galang JA, McClintock MK, Prendergast BJ (2009) Peripheral tumors induce depressive-like behaviors and cytokine production and alter hypothalamic-pituitary-adrenal axis regulation. Proc Natl Acad Sci U S A 106(22):9069–9074

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Lamkin DM, Lutgendorf SK, Lubaroff D, Sood AK, Beltz TG, Johnson AK (2011) Cancer induces inflammation and depressive-like behavior in the mouse: modulation by social housing. Brain Behav Immun 25(3):555–564

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Spiegel D (2012) Mind matters in cancer survival. Psychooncology 21(6):588–593

    PubMed Central  PubMed  Google Scholar 

  127. Antoni MH (2013) Psychosocial intervention effects on adaptation, disease course and biobehavioral processes in cancer. Brain Behav Immun 30(Suppl):S88–S98

    PubMed Central  PubMed  Google Scholar 

  128. Spiegel D, Bloom JR, Kraemer HC, Gottheil E (1989) Effect of psychosocial treatment on survival of patients with metastatic breast cancer. Lancet 2(8668):888–891

    CAS  PubMed  Google Scholar 

  129. Spiegel D (2014) Minding the body:p and cancer survival. Br J Health Psychol 19(3):465–485

    PubMed  Google Scholar 

  130. Antoni MH, Lutgendorf SK, Blomberg B, Carver CS, Lechner S, Diaz A et al (2012) Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics. Biol Psychiatry 71(4):366–372

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Heffner KL, Loving TJ, Robles TF, Kiecolt-Glaser JK (2003) Examining psychosocial factors related to cancer incidence and progression: in search of the silver lining. Brain Behav Immun 17(1):109–111

    Google Scholar 

  132. Dhabhar FS, Saul AN, Holmes TH, Daugherty C, Neri E, Tillie JM et al (2012) High-anxious individuals show increased chronic stress burden, decreased protective immunity, and increased cancer progression in a mouse model of squamous cell carcinoma. PLoS One 7(4):e33069

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9(4):519–525

    CAS  PubMed  Google Scholar 

  134. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmühl Y, Fischer D et al (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12(12):1559–1566

    CAS  PubMed  Google Scholar 

  135. Elliott E, Ezra-Nevo G, Regev L, Neufeld-Cohen A, Chen A (2010) Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat Neurosci 13(11):1351–1353

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin Litzelman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Litzelman, K., Verma, M. (2015). Epigenetic Regulation in Biopsychosocial Pathways. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics