Skip to main content

Functional Genomics of Tick Vectors Challenged with the Cattle Parasite Babesia bigemina

  • Protocol
  • First Online:
Veterinary Infection Biology: Molecular Diagnostics and High-Throughput Strategies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1247))

Abstract

Ticks are obligate hematophagous ectoparasites considered as vectors of animal diseases, having a huge economic impact in cattle industry. Babesia spp. are tick-borne pathogens that cause a disease called babesiosis in a wide range of animals and in humans. Control of tick infestations is mainly based on the use of acaricides, which have limited efficacy reducing tick infestations, mostly due to wrong usage, and is often accompanied by the selection of acaricide-resistant ticks, environmental contamination, and contamination of milk and meat products. Vaccines affecting both vector and pathogens constitute new control strategies for tick and tick-borne diseases and are, therefore, a good alternative to chemical control.

In this chapter we describe the identification of Rhipicephalus (Boophilus) annulatus genes differentially expressed in response to infection with B. bigemina by using suppression-subtractive hybridization (SSH), which allows the identification of differentially expressed genes. The results of the SSH studies are validated by real-time reverse transcription (RT)-PCR. Functional analyses are conducted by RNAi on selected R. annulatus genes to determine their putative role in B. bigemina–tick interactions. Gathered data may be useful for the future development of improved vaccines and vaccination strategies to control babesiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bock R, Jackcon L, de Vos A, Jorgensen W (2004) Babesiosis of cattle. Parasitology 129:S247–S269

    Article  PubMed  Google Scholar 

  2. de la Fuente J, Moreno-Cid JA, Canales M et al (2011) Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. Vet Parasitol 181:17–22

    Article  PubMed  Google Scholar 

  3. Macaluso KR, Mulenga A, Simser JA et al (2003) Differential expression of genes in uninfected and rickettsia-infected Dermacentor variabilis ticks as assessed by differential-display PCR. Infect Immun 71:6165–6170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Mulenga A, Macaluso KR, Simser JA et al (2003) Dynamics of Rickettsia-tick interactions: identification and characterization of differentially expressed mRNAs in uninfected and infected Dermacentor variabilis. Insect Mol Biol 12:185–193

    Article  CAS  PubMed  Google Scholar 

  5. Nene V, Lee D, Kang’a S, Skilton R et al (2004) Genes transcribed in the salivary glands of female Rhipicephalus appendiculatus ticks infected with Theileria parva. Insect Biochem Mol Biol 34:1117–1128

    Article  PubMed  Google Scholar 

  6. Rudenko N, Golovchenko M, Edwards MJ et al (2005) Differential expression of Ixodes ricinus tick genes induced by blood feeding or Borrelia burgdorferi infection. J Med Entomol 42:36–41

    Article  CAS  PubMed  Google Scholar 

  7. de la Fuente J, Blouin EF, Manzano-Roman NR et al (2007) Functional genomic studies of tick cells in response to infection with the cattle pathogen, Anaplasma marginale. Genomics 90:712–722

    Article  PubMed  Google Scholar 

  8. de la Fuente J, Kocan KM, Almazan C et al (2007) RNA interference for the study and genetic manipulation of ticks. Trends Parasitol 23:427–433

    Article  PubMed  Google Scholar 

  9. Villar M, Torina A, Nunez Y et al (2010) Application of highly sensitive saturation labeling to the analysis of differential protein expression in infected ticks from limited samples. Proteome Sci 8:43

    Article  PubMed Central  PubMed  Google Scholar 

  10. Zivkovic Z, Esteves E, Almazan C et al (2010) Differential expression of genes in salivary glands of male Rhipicephalus (Boophilus) microplus in response to infection with Anaplasma marginale. BMC Genomics 11:186

    Article  PubMed Central  PubMed  Google Scholar 

  11. Mercado-Curiel RF, Palmer GH, Guerrero FD et al (2011) Temporal characterisation of the organ-specific Rhipicephalus microplus transcriptional response to Anaplasma marginale infection. Int J Parasitol 41:851–860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Antunes S, Golovchenko M, Rudenko N et al (2012) Gene silencing of the tick antigens selected after infection with Babesia bigemina, in the host tick Rhipicephalus annulatus by RNA interference. Int J Parasitol 42:187–195

    Article  CAS  PubMed  Google Scholar 

  13. Zivkovic Z, Torina A, Mitra R et al (2010) Subolesin expression in response to pathogen infection in ticks. BMC Immunol 11:7

    Article  PubMed Central  PubMed  Google Scholar 

  14. de la Fuente J, Maritz-Olivier C, Naranjo V et al (2008) Evidence of the role of tick subolesin in gene expression. BMC Genomics 9:372

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kocan KM, Zivkovic Z, Blouin EF et al (2009) Silencing of genes involved in Anaplasma marginale–tick interactions affects the pathogen developmental cycle in Dermacentor variabilis. BMC Dev Biol 9:42

    Article  PubMed Central  PubMed  Google Scholar 

  16. Guo YJ, Ribeiro JMC, Anderson JM et al (2009) dCAS: a desktop application for cDNA sequence annotation. Bioinformatics 25:1195–1196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Fire A, Xu S, Montgomery MK, Kostas SA et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  18. Montgomery MK, Xu SQ, Fire A (1998) RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95:15502–15507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mello CC, Conte D (2004) Revealing the world of RNA interference. Nature 431:338–342

    Article  CAS  PubMed  Google Scholar 

  20. de la Fuente J, Kocan KM (2006) Strategies for development of vaccines for control of ixodid tick species. Parasite Immunol 28:275–283

    Article  PubMed  Google Scholar 

  21. Hoa NT, Keene KM, Olson KE et al (2003) Characterization of RNA interference in an Anopheles gambiae cell line. Insect Biochem Mol Biol 33:949–957

    Article  CAS  PubMed  Google Scholar 

  22. Pal U, Li X, Wang T et al (2004) TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119:457–468

    Article  CAS  PubMed  Google Scholar 

  23. Ramamoorthi N, Narasimhan S, Pal U et al (2005) The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436:573–577

    Article  CAS  PubMed  Google Scholar 

  24. Sukumaran B, Narasimhan S, Anderson JF et al (2006) An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands. J Exp Med 203:1507–1517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Merino O, Almazan C, Canales M et al (2011) Control of Rhipicephalus (Boophilus) microplus infestations by the combination of subolesin vaccination and tick autocidal control after subolesin gene knockdown in ticks fed on cattle. Vaccine 29:2248–2254

    Article  CAS  PubMed  Google Scholar 

  26. Shkap V, Leibovitz B, Krigel Y et al (2005) Vaccination of older Bos taurus bulls against bovine babesiosis. Vet Parasitol 129:235–242

    Article  CAS  PubMed  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  28. Schefe JH, Lehmann KE, Buschmann IR et al (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression's C-T difference” formula. J Mol Med 84:901–910

    Article  CAS  PubMed  Google Scholar 

  29. de la Fuente J, Almazan C, Blouin EF et al (2006) Reduction of tick infections with Anaplasma marginale and A. phagocytophilum by targeting the tick protective antigen subolesin. Parasitol Res 100:85–91

    Article  PubMed  Google Scholar 

  30. Willadsen P, Kemp DH (1988) Vaccination with concealed antigens for tick control. Parasitol Today 4:196–198

    Article  CAS  PubMed  Google Scholar 

  31. Suarez CE, Palmer GH, Florin-Christensen M et al (2003) Organization, transcription, and expression of rhoptry associated protein genes in the Babesia bigemina rap-1 locus. Mol Biochem Parasitol 127:101–112

    Article  CAS  PubMed  Google Scholar 

  32. Petrigh R, Ruybal P, Thompson C et al (2008) Improved molecular tools for detection of Babesia bigemina. Ann N Y Acad Sci 1149:155–157

    Article  CAS  PubMed  Google Scholar 

  33. Bernard P, Gabant P, Bahassi EM, Couturier M (1994) Positive-selection vectors using the F plasmid ccdB killer gene. Gene 148:71–74

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Domingos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Domingos, A., Antunes, S., Villar, M., de la Fuente, J. (2015). Functional Genomics of Tick Vectors Challenged with the Cattle Parasite Babesia bigemina . In: Cunha, M., Inácio, J. (eds) Veterinary Infection Biology: Molecular Diagnostics and High-Throughput Strategies. Methods in Molecular Biology, vol 1247. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2004-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2004-4_32

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2003-7

  • Online ISBN: 978-1-4939-2004-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics