Skip to main content

Genome-Wide Co-Localization Screening of Nuclear Body Components Using a Fluorescently Tagged FLJ cDNA Clone Library

  • Protocol
  • First Online:
Nuclear Bodies and Noncoding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1262))

Abstract

Mammalian cell nuclei contain multiple granular structures, which are termed nuclear bodies. These structures are involved in various molecular events in the nucleus; they provide platforms for biogenesis of macromolecular complexes that are essential for gene expression, such as the ribosome and spliceosome; they act as reservoirs of various regulatory factors; and they are involved in the regulation of specific gene loci. Nuclear bodies are usually visualized by immunostaining for specific marker proteins. Although each type of nuclear body contains a distinct set of proteins, the protein components of most types of nuclear bodies remain to be identified. This chapter introduces a new approach to identify the protein components of specific types of nuclear bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spector D (2006) Snapshot: cellular bodies. Cell 127:1071

    Article  PubMed  Google Scholar 

  2. Mao YS et al (2011) Biogenesis and function of nuclear bodies. Trends Genet 27:295–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Boisvert FM et al (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585

    Article  CAS  PubMed  Google Scholar 

  4. Nizami ZF et al (2010) The Cajal body and histone locus body. Cold Spring Harb Perspect Biol 2:a000653

    Article  PubMed Central  PubMed  Google Scholar 

  5. Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612

    Article  CAS  PubMed  Google Scholar 

  6. Yang L et al (2011) ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147:773–788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lallemand-Breitenbach V, de Thé H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2:a000661

    Google Scholar 

  8. Clemson CM et al (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132:259–275

    Article  CAS  PubMed  Google Scholar 

  9. Valgardsdottir R et al (2005) Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells. Mol Biol Cell 16:2597–2604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Tripathi V et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chen LL, Carmichael GG (2009) Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 35:467–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Clemson CM et al (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Sasaki YT et al (2009) MENε/β noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci U S A A106:2525–2530

    Article  Google Scholar 

  14. Sunwoo H et al (2009) MEN ε/β nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19:347–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Zheng R et al (2010) Polypurine-repeat-containing RNAs: a novel class of long non-coding RNA in mammalian cells. J Cell Sci 123:3734–3744

    Article  CAS  PubMed  Google Scholar 

  16. Audas TE et al (2012) Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol Cell 45:147–157

    Article  CAS  PubMed  Google Scholar 

  17. Andersen JS et al (2005) Nucleolar proteome dynamics. Nature 33:77–83

    Article  Google Scholar 

  18. Saitoh N et al (2004) Proteomic analysis of interchromatin granule clusters. Mol Biol Cell 15:3876–3890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Goshima N et al (2008) Human protein factory for converting the transcriptome into an in vitro-expressed proteome. Nat Methods 5:1011–1017

    Article  CAS  PubMed  Google Scholar 

  20. Maruyama Y et al (2009) Human gene and protein database (HGPD): a novel database presenting a large quantity of experiment-based results in human proteomics. Nucleic Acids Res 37:D762–D766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Maruyama Y et al (2012) HGPD: human gene and protein database, 2012 update. Nucleic Acids Res 40:D924–D929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Naganuma T et al (2012) Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J J31:4020–4034

    Article  Google Scholar 

Download references

Acknowledgments

We thank Takao Naganuma and the members of the Hirose Laboratory for their support and discussion. We also thank Yukio Maruyama for providing the localization dataset. This work was supported by the NEXT program from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuro Hirose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hirose, T., Goshima, N. (2015). Genome-Wide Co-Localization Screening of Nuclear Body Components Using a Fluorescently Tagged FLJ cDNA Clone Library. In: Nakagawa, S., Hirose, T. (eds) Nuclear Bodies and Noncoding RNAs. Methods in Molecular Biology, vol 1262. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2253-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2253-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2252-9

  • Online ISBN: 978-1-4939-2253-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics