Skip to main content

Considerations and Protocols for the Synthesis of Custom Protein Labeling Probes

  • Protocol
  • First Online:
Site-Specific Protein Labeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1266))

Abstract

Chemists and biologists have long recognized small molecule probes as powerful tools for functional genomics and proteomics studies. The possibility of specifically attaching chemical probes to individual proteins with spatial and temporal resolution has greatly improved our ability to visualize and characterize proteins in their native environment. The continued development of novel molecular probes for protein labeling is, therefore, of fundamental importance to gain new insights into biological processes in living cells and organisms. Several excellent approaches for the site-specific labeling of fusion proteins with chemical probes exist. Herein I discuss the design and generation of chemical probes for the SNAP-tag and CLIP-tag systems. The first part of this chapter is dedicated to reviewing the principles of the SNAP-tag technology, followed by a section dedicated to the development of chemical probes for unique applications, such as super-resolution imaging, protein trafficking and recycling, protein–protein interactions, and biomolecular sensing. The last part of the chapter contains experimental protocols and technical notes for the synthesis of selected SNAP-tag substrates and labeling of SNAP-tag fusion proteins in vitro and in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hinner MJ, Johnsson K (2010) How to obtain labeled proteins and what to do with them. Curr Opin Biotechnol 21:766–776

    Article  CAS  PubMed  Google Scholar 

  2. Johnsson N, Johnsson K (2007) Chemical tools for biomolecular imaging. ACS Chem Biol 2:31–38

    Article  CAS  PubMed  Google Scholar 

  3. Hanek A, CorrĂȘa IR Jr (2011) Chemical modification of proteins in living cells. In: Tschesche H (ed) Methods in protein biochemistry. DE GRUYTER, Berlin/Boston, pp 197–218

    Chapter  Google Scholar 

  4. Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89

    Article  CAS  PubMed  Google Scholar 

  5. Keppler A, Pick H, Arrivoli C et al (2004) Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci U S A 101:9955–9959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136

    Article  CAS  PubMed  Google Scholar 

  7. Los GV, Encell LP, McDougall MG et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    Article  CAS  PubMed  Google Scholar 

  8. Miller LW, Cai Y, Sheetz MP et al (2005) In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag. Nat Methods 2:255–257

    Article  CAS  PubMed  Google Scholar 

  9. Mizukami S (2011) Development of molecular imaging tools to investigate protein functions by chemical probe design. Chem Pharm Bull 59:1435–1446

    Article  CAS  PubMed  Google Scholar 

  10. Vivero-Pol L, George N, Krumm H et al (2005) Multicolor imaging of cell surface proteins. J Am Chem Soc 127:12770–12771

    Article  CAS  PubMed  Google Scholar 

  11. Popp MW, Ploegh HL (2011) Making and breaking peptide bonds: protein engineering using sortase. Angew Chem Int Ed Engl 50:5024–5032

    Article  CAS  PubMed  Google Scholar 

  12. Uttamapinant C, White KA, Baruah H et al (2010) A fluorophore ligase for site-specific protein labeling inside living cells. Proc Natl Acad Sci U S A 107:10914–10919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Correa IR, Baker B, Zhang A et al (2013) Substrates for improved live-cell fluorescence labeling of SNAP-tag. Curr Pharm Des 19:5414–5420

    Article  CAS  PubMed  Google Scholar 

  14. Mollwitz B, Brunk E, Schmitt S et al (2012) Directed evolution of the suicide protein O(6)-alkylguanine-DNA alkyltransferase for increased reactivity results in an alkylated protein with exceptional stability. Biochemistry 51:986–994

    Article  CAS  PubMed  Google Scholar 

  15. Bodor DL, Rodriguez MG, Moreno N et al (2012) Analysis of protein turnover by quantitative SNAP-based pulse-chase imaging. Curr Protoc Cell Biol editorial board, Juan S Bonifacino [et al] Chapter 8, Unit8 8

    Google Scholar 

  16. Kindermann M, George N, Johnsson N et al (2003) Covalent and selective immobilization of fusion proteins. J Am Chem Soc 125:7810–7811

    Article  CAS  PubMed  Google Scholar 

  17. Iversen L, Cherouati N, Berthing T et al (2008) Templated protein assembly on micro-contact-printed surface patterns. Langmuir 24:6375–6381

    Article  CAS  PubMed  Google Scholar 

  18. Engin S, Trouillet V, Franz CM et al (2010) Benzylguanine thiol self-assembled monolayers for the immobilization of SNAP-tag proteins on microcontact-printed surface structures. Langmuir 26:6097–6101

    Article  CAS  PubMed  Google Scholar 

  19. Hoskins AA, Friedman LJ, Gallagher SS et al (2011) Ordered and dynamic assembly of single spliceosomes. Science 331:1289–1295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Breitsprecher D, Jaiswal R, Bombardier JP et al (2012) Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging. Science 336:1164–1168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Pellett PA, Sun X, Gould TJ et al (2011) Two-color STED microscopy in living cells. Biomed Opt Express 2:2364–2371

    Article  PubMed Central  PubMed  Google Scholar 

  22. Jones SA, Shim SH, He J et al (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8:499–508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Foraker AB, Camus SM, Evans TM et al (2012) Clathrin promotes centrosome integrity in early mitosis through stabilization of centrosomal ch-TOG. J Cell Biol 198:591–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chidley C, Haruki H, Pedersen MG et al (2011) A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis. Nat Chem Biol 7:375–383

    Article  CAS  PubMed  Google Scholar 

  25. Bojkowska K, Santoni de Sio F, Barde I et al (2011) Measuring in vivo protein half-life. Chem Biol 18:805–815

    Article  CAS  PubMed  Google Scholar 

  26. Gautier A, Nakata E, Lukinavicius G et al (2009) Selective cross-linking of interacting proteins using self-labeling tags. J Am Chem Soc 131:17954–17962

    Article  CAS  PubMed  Google Scholar 

  27. Lukinavicius G, Lavogina D, Orpinell M et al (2013) Selective chemical crosslinking reveals a cep57-cep63-cep152 centrosomal complex. Curr Biol 23:265–270

    Article  CAS  PubMed  Google Scholar 

  28. Brun MA, Tan KT, Nakata E et al (2009) Semisynthetic fluorescent sensor proteins based on self-labeling protein tags. J Am Chem Soc 131:5873–5884

    Article  CAS  PubMed  Google Scholar 

  29. Doumazane E, Scholler P, Zwier JM et al (2011) A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J 25:66–77

    Article  CAS  PubMed  Google Scholar 

  30. Lavis LD, Raines RT (2008) Bright ideas for chemical biology. ACS Chem Biol 3:142–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lukinavicius G, Johnsson K (2011) Switchable fluorophores for protein labeling in living cells. Curr Opin Chem Biol 15:768–774

    Article  CAS  PubMed  Google Scholar 

  32. Komatsu T, Johnsson K, Okuno H et al (2011) Real-time measurements of protein dynamics using fluorescence activation-coupled protein labeling method. J Am Chem Soc 133:6745–6751

    Article  CAS  PubMed  Google Scholar 

  33. Sun X, Zhang A, Baker B et al (2011) Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging. Chembiochem 12:2217–2226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Banala S, Maurel D, Manley S et al (2012) A caged, localizable rhodamine derivative for superresolution microscopy. ACS Chem Biol 7:289–293

    Article  CAS  PubMed  Google Scholar 

  35. Campos C, Kamiya M, Banala S et al (2011) Labelling cell structures and tracking cell lineage in zebrafish using SNAP-tag. Dev Dyn 240:820–827

    Article  CAS  PubMed  Google Scholar 

  36. Maurel D, Banala S, Laroche T et al (2010) Photoactivatable and photoconvertible fluorescent probes for protein labeling. ACS Chem Biol 5:507–516

    Article  CAS  PubMed  Google Scholar 

  37. Bannwarth M, CorrĂȘa IR Jr, Sztretye M et al (2009) Indo-1 derivatives for local calcium sensing. ACS Chem Biol 4:179–190

    Article  CAS  PubMed  Google Scholar 

  38. Kamiya M, Johnsson K (2010) Localizable and highly sensitive calcium indicator based on a BODIPY fluorophore. Anal Chem 82:6472–6479

    Article  CAS  PubMed  Google Scholar 

  39. Brun MA, Griss R, Reymond L et al (2011) Semisynthesis of fluorescent metabolite sensors on cell surfaces. J Am Chem Soc 133:16235–16242

    Article  CAS  PubMed  Google Scholar 

  40. Brun MA, Tan KT, Griss R et al (2012) A semisynthetic fluorescent sensor protein for glutamate. J Am Chem Soc 134:7676–7678

    Article  CAS  PubMed  Google Scholar 

  41. Uhlenheuer DA, Wasserberg D, Haase C et al (2012) Directed supramolecular surface assembly of SNAP-tag fusion proteins. Chemistry 18:6788–6794

    Article  CAS  PubMed  Google Scholar 

  42. Wasserberg D, Uhlenheuer DA, Neirynck P et al (2013) Immobilization of Ferrocene-modified SNAP-fusion proteins. Int J Mol Sci 14:4066–4080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48:6974–6998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Keppler A, Arrivoli C, Sironi L et al (2006) Fluorophores for live cell imaging of AGT fusion proteins across the visible spectrum. Biotechniques 41:167–170, 172, 174–165

    Article  CAS  PubMed  Google Scholar 

  45. Lukinavicius G, Umezawa K, Olivier N et al (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5:132–139

    Article  CAS  PubMed  Google Scholar 

  46. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9:929–943

    Article  CAS  PubMed  Google Scholar 

  47. Hein B, Willig KI, Wurm CA et al (2010) Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins. Biophys J 98:158–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Klein T, Loschberger A, Proppert S et al (2011) Live-cell dSTORM with SNAP-tag fusion proteins. Nat Methods 8:7–9

    Article  CAS  PubMed  Google Scholar 

  49. Dellagiacoma C, Lukinavicius G, Bocchio N et al (2010) Targeted photoswitchable probe for nanoscopy of biological structures. Chembiochem 11:1361–1363

    Article  CAS  PubMed  Google Scholar 

  50. Cole NB, Donaldson JG (2012) Releasable SNAP-tag probes for studying endocytosis and recycling. ACS Chem Biol 7:464–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Dutta D, Williamson CD, Cole NB et al (2012) Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis. PLoS One 7:e45799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:1001–1009

    Article  CAS  PubMed  Google Scholar 

  53. Frommer WB, Davidson MW, Campbell RE (2009) Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 38:2833–2841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Maurel D, Comps-Agrar L, Brock C et al (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Alvarez-Curto E, Ward RJ, Pediani JD et al (2010) Ligand regulation of the quaternary organization of cell surface M3 muscarinic acetylcholine receptors analyzed by fluorescence resonance energy transfer (FRET) imaging and homogeneous time-resolved FRET. J Biol Chem 285:23318–23330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Park S, Jiang H, Zhang H et al (2012) Modification of ghrelin receptor signaling by somatostatin receptor-5 regulates insulin release. Proc Natl Acad Sci U S A 109:19003–19008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Newman RH, Fosbrink MD, Zhang J (2011) Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 111:3614–3666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Tomat E, Nolan EM, Jaworski J et al (2008) Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells. J Am Chem Soc 130:15776–15777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Geissbuehler M, Spielmann T, Formey A et al (2010) Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell (A7r5). Biophys J 98:339–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Srikun D, Albers AE, Nam CI et al (2010) Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-Tag protein labeling. J Am Chem Soc 132:4455–4465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Masharina A, Reymond L, Maurel D et al (2012) A fluorescent sensor for GABA and synthetic GABA(B) receptor ligands. J Am Chem Soc 134:19026–19034

    Article  CAS  PubMed  Google Scholar 

  62. Montalbetti CAGN, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 61:10827–10852

    Article  CAS  Google Scholar 

  63. Colombo M, Mazzucchelli S, Montenegro JM et al (2012) Protein oriented ligation on nanoparticles exploiting O6-alkylguanine-DNA transferase (SNAP) genetically encoded fusion. Small 8:1492–1497

    Article  CAS  PubMed  Google Scholar 

  64. Recker T, Haamann D, Schmitt A et al (2011) Directed covalent immobilization of fluorescently labeled cytokines. Bioconjug Chem 22:1210–1220

    Article  CAS  PubMed  Google Scholar 

  65. Sielaff I, Arnold A, Godin G et al (2006) Protein function microarrays based on self-immobilizing and self-labeling fusion proteins. Chembiochem 7:194–202

    Article  CAS  PubMed  Google Scholar 

  66. Petershans A, Wedlich D, Fruk L (2011) Bioconjugation of CdSe/ZnS nanoparticles with SNAP tagged proteins. Chem Commun 47:10671–10673

    Article  CAS  Google Scholar 

  67. Stein V, Hollfelder F (2009) An efficient method to assemble linear DNA templates for in vitro screening and selection systems. Nucleic Acids Res 37:e122

    Article  PubMed Central  PubMed  Google Scholar 

  68. Kwok CW, Strahle U, Zhao Y et al (2011) Selective immobilization of Sonic hedgehog on benzylguanine terminated patterned self-assembled monolayers. Biomaterials 32:6719–6728

    Article  CAS  PubMed  Google Scholar 

  69. Howland SW, Tsuji T, Gnjatic S et al (2008) Inducing efficient cross-priming using antigen-coated yeast particles. J Immunother 31:607–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Shi G, Azoulay M, Dingli F et al (2012) SNAP-tag based proteomics approach for the study of the retrograde route. Traffic 13:914–925

    Article  CAS  PubMed  Google Scholar 

  71. Furuta K, Furuta A, Toyoshima YY et al (2013) Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors. Proc Natl Acad Sci U S A 110:501–506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Sacca B, Meyer R, Erkelenz M et al (2010) Orthogonal protein decoration of DNA origami. Angew Chem Int Ed Engl 49:9378–9383

    Article  CAS  PubMed  Google Scholar 

  73. Yang Y, Zhang CY (2012) Sensitive detection of intracellular sumoylation via SNAP tag-mediated translation and RNA polymerase-based amplification. Anal Chem 84:1229–1234

    Article  CAS  PubMed  Google Scholar 

  74. Dohrmann PR, Manhart CM, Downey CD et al (2011) The rate of polymerase release upon filling the gap between Okazaki fragments is inadequate to support cycling during lagging strand synthesis. J Mol Biol 414:15–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Kaltenbach M, Hollfelder F (2012) SNAP display: in vitro protein evolution in microdroplets. Methods Mol Biol 805:101–111

    Article  CAS  PubMed  Google Scholar 

  76. Kaltenbach M, Stein V, Hollfelder F (2011) SNAP dendrimers: multivalent protein display on dendrimer-like DNA for directed evolution. Chembiochem 12:2208–2216

    Article  CAS  PubMed  Google Scholar 

  77. Provost CR, Sun L (2010) Fluorescent labeling of COS-7 expressing SNAP-tag fusion proteins for live cell imaging. J Vis Exp pii:1876

    Google Scholar 

  78. Tugulu S, Arnold A, Sielaff I et al (2005) Protein-functionalized polymer brushes. Biomacromolecules 6:1602–1607

    Article  CAS  PubMed  Google Scholar 

  79. Juillerat A, Gronemeyer T, Keppler A et al (2003) Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. Chem Biol 10:313–317

    Article  CAS  PubMed  Google Scholar 

  80. Jansen LE, Black BE, Foltz DR et al (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176:795–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Farr GA, Hull M, Mellman I et al (2009) Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells. J Cell Biol 186:269–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Brenda Baker and John Buswell for valuable suggestions and critical reading of the manuscript. Don Comb and Jim Ellard for their continued support of basic research at New England Biolabs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan R. CorrĂȘa Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

CorrĂȘa, I.R. (2015). Considerations and Protocols for the Synthesis of Custom Protein Labeling Probes. In: Gautier, A., Hinner, M. (eds) Site-Specific Protein Labeling. Methods in Molecular Biology, vol 1266. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2272-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2272-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2271-0

  • Online ISBN: 978-1-4939-2272-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics