Skip to main content

Visualizing Toll-Like Receptor-Dependent Phagosomal Dynamics in Murine Dendritic Cells Using Live Cell Microscopy

  • Protocol
  • First Online:
Membrane Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1270))

Abstract

Dendritic cells are professional phagocytes that are highly specialized to process and present antigens from internalized particles to prime naïve T cells. To achieve their functions, the phagocytic machinery and membrane dynamics of these cells have been adapted to optimize presentation of antigens from phagocytosed particles that bear ligands of pattern recognition receptors, such as toll-like receptors (TLRs), and that are thus perceived of as “dangerous.” We have recently shown that phagosomes that are engaged in TLR signaling in dendritic cells emit numerous long tubules that facilitate content exchange with other signaling phagosomes and favor presentation of particle-derived antigens. This chapter describes the methods used to study the formation of these tubules, which we refer to as “phagotubules,” by live cell imaging of mouse dendritic cells after the phagocytosis of fluorescent latex beads. We also describe methods to assess the effect of TLR signaling on this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merad M, Sathe P, Helft J, Miller J, Mortha A (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604

    Article  CAS  PubMed  Google Scholar 

  2. Haniffa M, Collin M, Ginhoux F (2013) Ontogeny and functional specialization of dendritic cells in human and mouse. Adv Immunol 120:1–49

    Article  CAS  PubMed  Google Scholar 

  3. Liu KNM (2010) Origin and development of dendritic cells. Immunol Rev 234:45–54

    Article  CAS  PubMed  Google Scholar 

  4. Kagan JC, Iwasaki A (2012) The phagosome as the organelle linking innate and adaptive immunity. Traffic 13:1053–1061

    Google Scholar 

  5. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650

    Article  CAS  PubMed  Google Scholar 

  6. Moretti J, Blander JM (2014) Insights into phagocytosis-coupled activation of pattern recognition receptors and inflammasomes. Curr Opin Immunol 26:100–110

    Article  CAS  PubMed  Google Scholar 

  7. Steinman RM, Hemmi H (2006) Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 311:17–58

    CAS  PubMed  Google Scholar 

  8. Blander JM (2007) Signalling and phagocytosis in the orchestration of host defence. Cell Microbiol 9:290–299

    Article  CAS  PubMed  Google Scholar 

  9. Lanzavecchia A (1996) Mechanisms of antigen uptake for presentation. Curr Opin Immunol 8:348–354

    Article  CAS  PubMed  Google Scholar 

  10. Sallusto F, Cella M, Danieli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182:389–400

    Article  CAS  PubMed  Google Scholar 

  11. Heinsbroek SE, Kamen LA, Taylor PR, Brown GD, Swanson J, Gordon S (2009) Actin and phosphoinositide recruitment to fully formed candida albicans phagosomes in mouse macrophages. J Innate Immun 1:244–253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Fairn GD, Grinstein S (2012) How nascent phagosomes mature to become phagolysosomes. Trends Cell Biol 33:397–405

    CAS  Google Scholar 

  13. Trombetta ES, Ebersold M, Garrett WS, Pypaert M, Mellman I (2003) Activation of lysosomal function during dendritic cell maturation. Science 299:1400–1403

    Article  CAS  PubMed  Google Scholar 

  14. Savina A, Amigorena S (2007) Phagocytosis and antigen presentation in dendritic cells. Immunol Rev 219:143–156

    Article  CAS  PubMed  Google Scholar 

  15. Boes M, Bertho N, Cerny J, Op den Brouw M, Kirchhausen T, Ploegh H (2003) T cells induce extended class ii mhc compartments in dendritic cells in a toll-like receptor-dependent manner. J Immunol 171:4081–4088

    Article  CAS  PubMed  Google Scholar 

  16. Chow A, Toomre D, Garrett W, Mellman I (2002) Dendritic cell maturation triggers retrograde mhc class ii transport from lysosomes to the plasma membrane. Nature 418:988–994

    Article  CAS  PubMed  Google Scholar 

  17. Mantegazza AR, Zajak AL, Twelvetrees A, Holzbaur EL, Amigorena S, Marks MS (2014) Tlr-dependent phagosome tubulation in dendritic cells promotes phagosome cross-talk to optimize mhc-ii antigen presentation. Proc Natl Acad Sci U S A 111:15508–15513

    Google Scholar 

  18. Husebye H, Aune MH, Stenvik J, Samstad E, Skjeldal F, Halaas Ø et al (2010) The rab11a gtpase controls toll-like receptor 4-induced activation of interferon regulatory factor-3 on phagosomes. Immunity 33:583–596

    Article  CAS  PubMed  Google Scholar 

  19. Mantegazza AR, Guttentag SH, El-Benna J, Sasai M, Iwasaki A, Shen H et al (2012) Adaptor protein-3 in dendritic cells facilitates phagosomal toll-like receptor signaling and antigen presentation to cd4+ t cells. Immunity 36:782–794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Nair-Gupta P, Baccarini A, Tung N, Seyffer F, Florey O, Huang Y et al (2014) Tlr signals induce phagosomal mhc-i delivery from the endosomal recycling compartment to allow cross-presentation. Cell 158:506–521

    Article  CAS  PubMed  Google Scholar 

  21. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  22. Barton GM, Kagan JC (2009) A cell biological view of toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 9:535–542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Dunne A, Carpenter S, Brikos C, Gray P, Strelow A, Wesche H et al (2010) Irak1 and irak4 promote phosphorylation, ubiquitination, and degradation of myd88 adaptor-like (mal). J Biol Chem 285:18276–18282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Takeda K, Akira S (2004) Tlr signaling pathways. Semin Immunol 16:3–9

    Article  CAS  PubMed  Google Scholar 

  25. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M et al (1998) Targeted disruption of the myd88 gene results in loss of il-1- and il-18-mediated function. Immunity 9:143–150

    Article  CAS  PubMed  Google Scholar 

  26. Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T et al (2002) Essential role for tirap in activation of the signalling cascade shared by tlr2 and tlr4. Nature 420:324–329

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H et al (2003) Role of adaptor trif in the myd88-independent toll-like receptor signaling pathway. Science 301:640–643

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T et al (2003) Tram is specifically involved in the toll-like receptor 4-mediated myd88-independent signaling pathway. Nat Immunol 4:1144–1150

    Article  CAS  PubMed  Google Scholar 

  29. Xu Y, Zhan Y, Lew AM, Naik SH, Kershaw MH (2007) Differential development of murine dendritic cells by gm-csf versus flt3 ligand has implications for inflammation and trafficking. J Immunol 179:7577–7584

    Article  CAS  PubMed  Google Scholar 

  30. Savina A, Vargas P, Guermonprez P, Lennon A-M, Amigorena S (2010) Measuring ph, ros production, maturation, and degradation in dendritic cell phagosomes using cytofluorometry-based assays. In: Naik SH (ed) Dendritic cell protocols, methods in molecular biology. Humana Press, Berlin, pp 383–402

    Chapter  Google Scholar 

  31. Winzler C, Rovere P, Rescigno M, Granucci F, Penna G, Adorini L et al (1997) Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med 185:317–328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Inaba K, Swiggard WJ, Steinman RM, Romani N, Schuler G, Brinster C (2009) Isolation of dendritic cells. Curr Protoc Immunol Chapter 3, Unit 3 7

    Google Scholar 

  33. Gross O (2012) Measuring the inflammasome. Methods Mol Biol 844:199–222

    Article  PubMed  Google Scholar 

  34. Clark K, Plater L, Peggie M, Cohen P (2009) Use of the pharmacological inhibitor bx795 to study the regulation and physiological roles of tbk1 and ikappab kinase epsilon: a distinct upstream kinase mediates ser-172 phosphorylation and activation. J Biol Chem 284:14136–14146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Marks Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mantegazza, A.R., Marks, M.S. (2015). Visualizing Toll-Like Receptor-Dependent Phagosomal Dynamics in Murine Dendritic Cells Using Live Cell Microscopy. In: Tang, B. (eds) Membrane Trafficking. Methods in Molecular Biology, vol 1270. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2309-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2309-0_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2308-3

  • Online ISBN: 978-1-4939-2309-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics