Skip to main content

PRIMEGENSw3: A Web-Based Tool for High-Throughput Primer and Probe Design

  • Protocol
  • First Online:
PCR Primer Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1275))

Abstract

Highly specific and efficient primer and probe design has been a major hurdle in many high-throughput techniques. Successful implementation of any PCR or probe hybridization technique depends on the quality of primers and probes used in terms of their specificity and cross-hybridization. Here we describe PRIMEGENSw3, a set of web-based utilities for high-throughput primer and probe design. These utilities allow users to select genomic regions and to design primer/probe for selected regions in an interactive, user-friendly, and automatic fashion. The system runs the PRIMEGENS algorithm in the back-end on the high-performance server with the stored genomic database or user-provided custom database for cross-hybridization check. Cross-hybridization is checked not only using BLAST but also by checking mismatch positions and energy calculation of potential hybridization hits. The results can be visualized online and also can be downloaded. The average success rate of primer design using PRIMEGENSw3 is ~90 %. The web server also supports primer design for methylated sequences, which is used in epigenetic studies. Stand-alone version of the software is also available for download at the website.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu D, Li G, Wu L, Zhou J, Xu Y (2002) PRIMEGENS: robust and efficient design of gene-specific probes for microarray analysis. Bioinformatics 18:1432–1437

    Article  CAS  PubMed  Google Scholar 

  2. Srivastava GP, Xu D (2007) Genome-scale probe and primer design with PRIMEGENS. Methods Mol Biol 402:159–176

    Article  CAS  PubMed  Google Scholar 

  3. Srivastava GP, Guo J, Shi H, Xu D (2008) PRIMEGENS-v2: genome-wide primer design for analyzing DNA methylation patterns of CpG islands. Bioinformatics 24:1837–1842

    Article  CAS  PubMed  Google Scholar 

  4. Srivastava GP, Kushwaha G, Shi H, Xu D (2010) High-throughput primer and probe design for genome-wide DNA methylation study using PRIMEGENS. In: A practical guide to bioinformatics analysis. iConcept Press Ltd, G. Fung ed. Hong Kong, pp 151–171

    Google Scholar 

  5. Lee EJ, Pei L, Srivastava GP, Joshi T, Kushwaha G, Choi JH, Wang X, Mockaitis K, Colbourne J, Zhang L, Schroth GP, Xu D, Zhang K, Shi H (2011) Targeted bisulfate sequencing by solution hybrid selection and massively parallel sequencing. Nucleic Acids Res 39(19):e127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Srivastava GP, Hanumappa M, Kushwaha G, Nguyen HT, Xu D (2011) PRIMEGENS-v2: homolog-specific PCR primer design for profiling splice variants. Nucleic Acids Res:39(10):e69

    Google Scholar 

  7. Kushwaha G, Srivastava GP, Xu D (2011) PRIMEGENSw3: a web-based tool for high-throughput primer and probe design. In: Bioinformatics and Biomedicine (BIBM), 2011 IEEE international conference, 2011, 345, 351. doi: 10.1109/BIBM.2011.43

  8. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  CAS  PubMed  Google Scholar 

  11. Crothers DM, Zimm BH (1964) Theory of the melting transition of synthetic polynucleotides: evaluation of the stacking free energy. J Mol Biol 9:1–9

    Article  CAS  PubMed  Google Scholar 

  12. DeVoe H, Tinoco I Jr (1962) The stability of helical polynucleotides: base contributions. J Mol Biol 4:500–517

    Article  CAS  PubMed  Google Scholar 

  13. Gray DM, Tinoco I Jr (1970) A new approach to the study of sequence-dependent properties of polynucleotides. Biopolymers 9:223–244

    Article  CAS  Google Scholar 

  14. Borer PN, Dengler B, Tinoco I Jr, Uhlenbeck OC (1974) Stability of ribonucleic acid double-stranded helices. J Mol Biol 86:843–853

    Article  CAS  PubMed  Google Scholar 

  15. Tinoco I Jr, Borer PN, Dengler B, Levine MD, Uhlenbeck OC, Crothers DM, Gralla J (1973) Improved estimation of secondary structure in ribonucleic acids. Nat New Biol 246:40–41

    Article  CAS  PubMed  Google Scholar 

  16. Uhlenbeck OC, Borer PN, Dengler B, Tinoco I Jr (1973) Stability of RNA hairpin loops. J Mol Biol 73:483–496

    Article  CAS  PubMed  Google Scholar 

  17. Breslauer KJ et al (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A 83(11):3746–3750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Rychlik W, Spencer WJ, Rhoads RE (1990) Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res 18(21):6409–6412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Owczarzy R, Vallone PM, Gallo FJ, Paner TM, Lane MJ, Benight AS (1997) Predicting sequence-dependent melting stability of short duplex DNA oligomers. Biopolymers 44(3):217–239

    Article  CAS  PubMed  Google Scholar 

  20. Ke S-H, Wartell RM (1993) Influence of nearest neighbor sequence on the stability of base pair mismatches in long DNA: determination by temperature-gradient gel electrophoresis. Nucleic Acids Res 21(22):5137–5143

    Article  PubMed Central  PubMed  Google Scholar 

  21. SantaLucia J Jr, Allawi HT, Seneviratne PA (1996) Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35:3555–3562

    Article  CAS  PubMed  Google Scholar 

  22. Santalucia JA (1998) Unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95:1460–1465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Peyret N, Seneviratne PA, Allawi HT, SantaLucia J (1999) Nearest-neighbor thermodynamics and NMR of DNA sequences with internal AA, CC, GG, and TT mismatches. Biochemistry 38:3468–3477

    Article  CAS  PubMed  Google Scholar 

  24. Hyndman D, Cooper A, Pruzinsky S, Coad D, Mitsuhashi M (1996) Software to determine optimal oligonucleotide sequences based on hybridization simulation data. Biotechniques 20:1090–1094, 1096–1097

    CAS  PubMed  Google Scholar 

  25. Allawi HT, SantaLucia J Jr (1997) Thermodynamics and NMR of Internal G∙T Mismatches in DNA. Biochemistry 36:10581–10594

    Article  CAS  PubMed  Google Scholar 

  26. Allawi HT, SantaLucia J Jr (1998) Nearest-neighbor thermodynamics of internal A∙C mismatches in DNA: sequence dependence and pH effects. Biochemistry 37:9435–9444

    Article  CAS  PubMed  Google Scholar 

  27. Allawi HT, SantaLucia J Jr (1998) Thermodynamics of internal C·T mismatches in DNA. Nucleic Acids Res 26:2694–2701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Allawi HT, SantaLucia J Jr (1998) Nearest neighbor thermodynamic parameters for internal G∙A mismatches in DNA. Biochemistry 37:2170–2179

    Article  CAS  PubMed  Google Scholar 

  29. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  30. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  CAS  PubMed  Google Scholar 

  31. Baulcombe DC (2007) Molecular biology. Amplified silencing. Science 315:199–200

    Article  CAS  PubMed  Google Scholar 

  32. Allen E, Howell MD (2010) MiRNAs in the biogenesis of trans-acting siRNAs in higher plants. Semin Cell Dev Biol 8:798–804

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by National Institute of Health (Grant 1R01-DA025779) and the Congressionally Directed Medical Research Programs, U.S. Army Medical Research and Materiel Command (Grant BC062135). This research is also supported in part by the Paul K. and Diane Shumaker Endowment in Bioinformatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kushwaha, G., Srivastava, G.P., Xu, D. (2015). PRIMEGENSw3: A Web-Based Tool for High-Throughput Primer and Probe Design. In: Basu, C. (eds) PCR Primer Design. Methods in Molecular Biology, vol 1275. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2365-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2365-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2364-9

  • Online ISBN: 978-1-4939-2365-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics