Skip to main content

Metabonomics and Diagnostics

  • Protocol
  • First Online:
Metabonomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1277))

Abstract

Metabonomic techniques have considerable potential in the field of clinical diagnostics, typifying the application of a translational research paradigm. Care must be taken at all stages to apply appropriate methodology with accurate patient selection and profiling, and rigorous data acquisition and handling, to ensure clinical validity.

An ever-increasing number of publications in a wide range of diseases and diverse patient groups suggest a variety of potential clinical uses; prospective studies in large validation cohorts are required to bring metabonomics into routine clinical practice. In this chapter, the utility of metabonomics as a diagnostic tool will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics—a review in human disease diagnosis. Anal Chim Acta 659:23–33

    Article  CAS  PubMed  Google Scholar 

  2. Bathen TF, Jensen LR, Sitter B et al (2007) MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status. Breast Cancer Res Treat 104:181–189

    Article  PubMed  Google Scholar 

  3. Blasco H, Corcia P, Pradat PF et al (2013) Metabolomics in cerebrospinal fluid of patients with amyotrophic lateral sclerosis: an untargeted approach via high-resolution mass spectrometry. J Proteome Res 12:3746–3754

    Article  CAS  PubMed  Google Scholar 

  4. Marchesi JR, Holmes E, F K et al (2007) Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res 6:546–551

    Article  CAS  PubMed  Google Scholar 

  5. Kumar S, Huang J, Abbassi-Ghadi N et al (2013) Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer. Anal Chem 85:6121–6128

    Article  CAS  PubMed  Google Scholar 

  6. Schafer KC, Denes J, Albrecht K et al (2009) In vivo, in situ tissue analysis using rapid evaporative ionization mass spectrometry. Angew Chem Int Ed Engl 48:8240–8242

    Article  PubMed  Google Scholar 

  7. Zhang AH, Sun H, Qiu S et al (2013) NMR-based metabolomics coupled with pattern recognition methods in biomarker discovery and disease diagnosis. Magn Reson Chem: MRC 51:549–556

    Article  CAS  PubMed  Google Scholar 

  8. Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056

    Article  CAS  PubMed  Google Scholar 

  9. Lindon JC, Keun HC, Ebbels TM et al (2005) The Consortium for Metabonomic Toxicology (COMET): aims, activities and achievements. Pharmacogenomics 6:691–699

    Article  CAS  PubMed  Google Scholar 

  10. Bjerrum JT, Nielsen OH, Wang YL et al (2008) Technology insight: metabonomics in gastroenterology-basic principles and potential clinical applications. Nat Clin Pract Gastroenterol Hepatol 5:332–343

    Article  PubMed  Google Scholar 

  11. Tuck MK, Chan DW, Chia D et al (2009) Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group. J Proteome Res 8:113–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ma Y, Zhang P, Yang Y et al (2012) Metabolomics in the fields of oncology: a review of recent research. Mol Biol Rep 39:7505–7511

    Article  CAS  PubMed  Google Scholar 

  13. Fan X, Bai J, Shen P (2005) Diagnosis of breast cancer using HPLC metabonomics fingerprints coupled with computational methods. Conf Proc IEEE Eng Med Biol Soc 6:6081–6084

    PubMed  Google Scholar 

  14. Mountford CE, Somorjai RL, Malycha P et al (2001) Diagnosis and prognosis of breast cancer by magnetic resonance spectroscopy of fine-needle aspirates analysed using a statistical classification strategy. Br J Surg 88:1234–1240

    Article  CAS  PubMed  Google Scholar 

  15. Lean C, Doran S, Somorjai RL et al (2004) Determination of grade and receptor status from the primary breast lesion by magnetic resonance spectroscopy. Technol Cancer Res Treat 3:551–556

    Article  PubMed  Google Scholar 

  16. Bathe OF, Shaykhutdinov R, Kopciuk K et al (2011) Feasibility of identifying pancreatic cancer based on serum metabolomics. Cancer Epidemiol Biomarkers Prev 20:140–147

    Article  CAS  PubMed  Google Scholar 

  17. OuYang D, Xu J, Huang H et al (2011) Metabolomic profiling of serum from human pancreatic cancer patients using 1H NMR spectroscopy and principal component analysis. Appl Biochem Biotechnol 165:148–154

    Article  PubMed  Google Scholar 

  18. Davis VW, Schiller DE, Eurich D et al (2013) Pancreatic ductal adenocarcinoma is associated with a distinct urinary metabolomic signature. Ann Surg Oncol 20(Suppl 3):S415–S423

    Article  PubMed  Google Scholar 

  19. Leichtle AB, Ceglarek U, Weinert P et al (2013) Pancreatic carcinoma, pancreatitis, and healthy controls: metabolite models in a three-class diagnostic dilemma. Metabolomics 9:677–687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  21. Abbassi-Ghadi N, Kumar S, Huang J et al (2013) Metabolomic profiling of oesophago-gastric cancer: a systematic review. Eur J Cancer 49:3625–3637

    Article  CAS  PubMed  Google Scholar 

  22. Qiu Y, Cai G, Su M et al (2009) Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS. J Proteome Res 8:4844–4850

    Article  CAS  PubMed  Google Scholar 

  23. Cheng Y, Xie G, Chen T et al (2012) Distinct urinary metabolic profile of human colorectal cancer. J Proteome Res 11:1354–1363

    Article  CAS  PubMed  Google Scholar 

  24. Bertini I, Cacciatore S, Jensen BV et al (2012) Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer. Cancer Res 72:356–364

    Article  CAS  PubMed  Google Scholar 

  25. Shariff MI, Gomaa AI, Cox IJ et al (2011) Urinary metabolic biomarkers of hepatocellular carcinoma in an Egyptian population: a validation study. J Proteome Res 10:1828–1836

    Article  CAS  PubMed  Google Scholar 

  26. Shariff MI, Ladep NG, Cox IJ et al (2010) Characterization of urinary biomarkers of hepatocellular carcinoma using magnetic resonance spectroscopy in a Nigerian population. J Proteome Res 9:1096–1103

    Article  CAS  PubMed  Google Scholar 

  27. Wen T, Gao L, Wen Z et al (2013) Exploratory investigation of plasma metabolomics in human lung adenocarcinoma. Mol Biosyst 9:2370–2378

    Article  CAS  PubMed  Google Scholar 

  28. Rocha CM, Carrola J, Barros AS et al (2011) Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of blood plasma. J Proteome Res 10:4314–4324

    Article  CAS  PubMed  Google Scholar 

  29. Alusta P, Im I, Pearce BA et al (2010) Improving proton MR spectroscopy of brain tissue for noninvasive diagnostics. J Magn Reson Imaging: JMRI 32:818–829

    Article  PubMed  Google Scholar 

  30. Locasale JW, Melman T, Song S et al (2012) Metabolomics of human cerebrospinal fluid identifies signatures of malignant glioma. Mol Cell Proteomics 11:M111.014688

    Article  PubMed Central  PubMed  Google Scholar 

  31. Nakamizo S, Sasayama T, Shinohara M et al (2013) GC/MS-based metabolomic analysis of cerebrospinal fluid (CSF) from glioma patients. J Neurooncol 113:65–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Cao M, Zhao L, Chen H et al (2012) NMR-based metabolomic analysis of human bladder cancer. Anal Sci 28:451–456

    Article  CAS  PubMed  Google Scholar 

  33. Gao H, Dong B, Jia J et al (2012) Application of ex vivo (1)H NMR metabonomics to the characterization and possible detection of renal cell carcinoma metastases. J Cancer Res Clin Oncol 138(5):753–761

    Article  CAS  PubMed  Google Scholar 

  34. Sreekumar A, Poisson LM, Rajendiran TM et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457(7231):910–914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Jentzmik F, Stephan C, Miller K et al (2010) Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours. Eur Urol 58:12–18, discussion 20–11

    Article  CAS  PubMed  Google Scholar 

  36. Stabler S, Koyama T, Zhao Z et al (2011) Serum methionine metabolites are risk factors for metastatic prostate cancer progression. PLoS One 6:e22486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Wang Y, Zhang L, Chen WL et al (2013) Rapid diagnosis and prognosis of de novo acute myeloid leukemia by serum metabonomic analysis. J Proteome Res 12:4393–4401

    Article  CAS  PubMed  Google Scholar 

  38. Hilvo M, Denkert C, Lehtinen L et al (2011) Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res 71:3236–3245

    Article  CAS  PubMed  Google Scholar 

  39. Sokol H, Seksik P, Rigottier-Gois L et al (2006) Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm Bowel Dis 12:106–111

    Article  PubMed  Google Scholar 

  40. Williams HR, Cox IJ, Walker DG et al (2009) Characterization of inflammatory bowel disease with urinary metabolic profiling. Am J Gastroenterol 104:1435–1444

    Article  CAS  PubMed  Google Scholar 

  41. Stephens NS, Siffledeen J, Su X et al (2013) Urinary NMR metabolomic profiles discriminate inflammatory bowel disease from healthy. J Crohns Colitis 7:e42–e48

    Article  PubMed  Google Scholar 

  42. Williams HR, Willsmore JD, Cox IJ et al (2012) Serum metabolic profiling in inflammatory bowel disease. Dig Dis Sci 57:2157–2165

    Article  CAS  PubMed  Google Scholar 

  43. Schicho R, Shaykhutdinov R, Ngo J et al (2012) Quantitative metabolomic profiling of serum, plasma, and urine by (1)H NMR spectroscopy discriminates between patients with inflammatory bowel disease and healthy individuals. J Proteome Res 11:3344–3357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Bjerrum JT, Nielsen OH, Hao F et al (2010) Metabonomics in ulcerative colitis: diagnostics, biomarker identification, and insight into the pathophysiology. J Proteome Res 9:954–962

    Article  CAS  PubMed  Google Scholar 

  45. Poordad FF (2007) Review article: the burden of hepatic encephalopathy. Aliment Pharmacol Ther 25(Suppl 1):3–9

    Article  PubMed  Google Scholar 

  46. Torlot FJ, McPhail MJ, Taylor-Robinson SD (2013) Meta-analysis: the diagnostic accuracy of critical flicker frequency in minimal hepatic encephalopathy. Aliment Pharmacol Ther 37:527–536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Jimenez B, Montoliu C, MacIntyre DA et al (2010) Serum metabolic signature of minimal hepatic encephalopathy by (1)H-nuclear magnetic resonance. J Proteome Res 9:5180–5187

    Article  CAS  PubMed  Google Scholar 

  48. Godoy MM, Lopes EP, Silva RO et al (2010) Hepatitis C virus infection diagnosis using metabonomics. J Viral Hepat 17:854–858

    Article  CAS  PubMed  Google Scholar 

  49. Holmes E, Foxall PJ, Spraul M et al (1997) 750 MHz 1H NMR spectroscopy characterisation of the complex metabolic pattern of urine from patients with inborn errors of metabolism: 2-hydroxyglutaric aciduria and maple syrup urine disease. J Pharm Biomed Anal 15:1647–1659

    Article  CAS  PubMed  Google Scholar 

  50. Denes J, Szabo E, Robinette SL et al (2012) Metabonomics of newborn screening dried blood spot samples: a novel approach in the screening and diagnostics of inborn errors of metabolism. Anal Chem 84:10113–10120

    Article  CAS  PubMed  Google Scholar 

  51. Oresic M, Simell S, Sysi-Aho M et al (2008) Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med 205:2975–2984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Wang TJ, Larson MG, Vasan RS et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453

    Article  PubMed Central  PubMed  Google Scholar 

  53. Zuppi C, Messana I, Tapanainen P et al (2002) Proton nuclear magnetic resonance spectral profiles of urine from children and adolescents with type 1 diabetes. Clin Chem 48:660–662

    CAS  PubMed  Google Scholar 

  54. Messana I, Forni F, Ferrari F et al (1998) Proton nuclear magnetic resonance spectral profiles of urine in type II diabetic patients. Clin Chem 44:1529–1534

    CAS  PubMed  Google Scholar 

  55. Zhao X, Fritsche J, Wang J et al (2010) Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics 6:362–374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Buist AS (2003) Similarities and differences between asthma and chronic obstructive pulmonary disease: treatment and early outcomes. Eur Respir J Suppl 39:30s–35s

    Article  CAS  PubMed  Google Scholar 

  57. McClay JL, Adkins DE, Isern NG et al (2010) (1)H nuclear magnetic resonance metabolomics analysis identifies novel urinary biomarkers for lung function. J Proteome Res 9:3083–3090

    Article  CAS  PubMed  Google Scholar 

  58. Jung J, Kim SH, Lee HS et al (2013) Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clin Exp Allergy 43:425–433

    Article  CAS  PubMed  Google Scholar 

  59. Motsinger-Reif AA, Zhu H, Kling MA et al (2013) Comparing metabolomic and pathologic biomarkers alone and in combination for discriminating Alzheimer’s disease from normal cognitive aging. Acta Neuropathol Commun 1:28

    Article  PubMed Central  PubMed  Google Scholar 

  60. Oresic M, Hyotylainen T, Herukka SK et al (2011) Metabolome in progression to Alzheimer’s disease. Transl Psychiatry 1:e57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Rocchetti I, Taruscio D, Pierannunzio D (2012) Modeling delay to diagnosis for amyotrophic lateral sclerosis: under reporting and incidence estimates. BMC Neurol 12:160

    Article  PubMed Central  PubMed  Google Scholar 

  62. Tang WH, Wang Z, Cho L et al (2009) Diminished global arginine bioavailability and increased arginine catabolism as metabolic profile of increased cardiovascular risk. J Am Coll Cardiol 53:2061–2067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Shah SH, Bain JR, Muehlbauer MJ et al (2010) Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet 3:207–214

    Article  CAS  PubMed  Google Scholar 

  64. Laborde C, Mourino-Alvarez L, Posada-Ayala M et al (2014) Plasma metabolomics reveals a potential panel of biomarkers for early diagnosis in acute coronary syndrome. Metabolomics 10(3):414–424

    Article  CAS  Google Scholar 

  65. Zhao YY (2013) Metabolomics in chronic kidney disease. Clin Chim Acta 422:59–69

    Article  CAS  PubMed  Google Scholar 

  66. Goek ON, Doring A, Gieger C et al (2012) Serum metabolite concentrations and decreased GFR in the general population. Am J Kidney Dis 60:197–206

    Article  CAS  PubMed  Google Scholar 

  67. Nicholson JK, Holmes E, Kinross JM et al (2012) Metabolic phenotyping in clinical and surgical environments. Nature 491:384–392

    Article  CAS  PubMed  Google Scholar 

  68. Nicholson JK, Wilson ID, Lindon JC (2011) Pharmacometabonomics as an effector for personalized medicine. Pharmacogenomics 12:103–111

    Article  CAS  PubMed  Google Scholar 

  69. Clayton TA, Lindon JC, Cloarec O et al (2006) Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 440:1073–1077

    Article  CAS  PubMed  Google Scholar 

  70. Mirnezami R, Kinross JM, Vorkas PA et al (2012) Implementation of molecular phenotyping approaches in the personalized surgical patient journey. Ann Surg 255:881–889

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horace R. T. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hicks, L.C., Ralphs, S.J.L., Williams, H.R.T. (2015). Metabonomics and Diagnostics. In: Bjerrum, J. (eds) Metabonomics. Methods in Molecular Biology, vol 1277. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2377-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2377-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2376-2

  • Online ISBN: 978-1-4939-2377-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics