Skip to main content

In Situ Footprinting of E. coli Transcription Elongation Complex with Chloroacetaldehyde

  • Protocol
  • First Online:
Bacterial Transcriptional Control

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1276))

  • 2555 Accesses

Abstract

The structure and dynamics of Escherichia coli transcription elongation complex are now well documented. However, most of the studies have been conducted in vitro and frequently under artificial conditions that facilitate the biochemical characterization of the complex. Thus, little is known about relevance of these results for the regulatory aspects of transcription elongation inside the cell. Here, we describe the use of a single-strand-specific probe chloroacetaldehyde for in situ footprinting of E. coli elongation complex temporarily halted by a protein roadblock. The method provides valuable information on the dynamic features of transcriptionally engaged RNA polymerase within the cellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Korzheva N, Mustaev A (2001) Transcription elongation complex: structure and function. Curr Opin Microbiol 4:119–125

    Article  CAS  PubMed  Google Scholar 

  2. Vassylyev DG, Vassylyeva MN, Perederina A et al (2007) Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448:157–162

    Article  CAS  PubMed  Google Scholar 

  3. Landick R (2001) RNA polymerase clamps down. Cell 105:567–570

    Article  CAS  PubMed  Google Scholar 

  4. Artsimovitch I, Landick R (2000) Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc Natl Acad Sci U S A 97:7090–7095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kireeva M, Kashlev M (2009) Mechanism of sequence-specific pausing of bacterial RNA polymerase. Proc Natl Acad Sci U S A 106:8900–8905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Weixlbaumer A, Leon K, Landick R et al (2013) Structural basis of transcriptional pausing in bacteria. Cell 152:431–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Toulmé F, Mosrin-Huaman C, Sparkowski J et al (2000) GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming. EMBO J 19:6853–6859

    Article  PubMed Central  PubMed  Google Scholar 

  8. Guérin M, Leng M, Rahmouni AR (1996) High resolution mapping of E. coli transcription elongation complex in situ reveals protein interactions with the nontranscribed strand. EMBO J 15:5397–5407

    PubMed Central  PubMed  Google Scholar 

  9. Kuśmierek JT, Singer B (1982) Chloroacetaldehyde-treated ribo- and deoxyribopolynucleotides. 1. Reaction products. Biochemistry 21:5717–5722

    Article  PubMed  Google Scholar 

  10. Ederth J, Artsimovitch I, Isaksson LA et al (2002) The downstream DNA jaw of bacterial RNA polymerase facilitates both transcriptional initiation and pausing. J Biol Chem 277:37456–37463

    Article  CAS  PubMed  Google Scholar 

  11. Ederth J, Mooney RA, Isaksson LA et al (2006) Functional interplay between the jaw domain of bacterial RNA polymerase and allele-specific residues in the product RNA-binding pocket. J Mol Biol 356:1163–1179

    Article  CAS  PubMed  Google Scholar 

  12. Toulmé F, Mosrin-Huaman C, Artsimovitch I et al (2005) Transcriptional pausing in vivo: a nascent RNA hairpin restricts lateral movements of RNA polymerase in both forward and reverse directions. J Mol Biol 351:39–51

    Article  PubMed  Google Scholar 

  13. Epshtein V, Toulmé F, Rahmouni AR et al (2003) Transcription through the roadblocks: the role of RNA polymerase cooperation. EMBO J 22:4719–4727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Rachel Mooney and Bob Landick for the RL1600 and RL1601 strains. The work described in this chapter was supported in part by la Ligue contre le Cancer Grand Ouest and recurrent funding from the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rachid Rahmouni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rahmouni, A.R., Mosrin-Huaman, C. (2015). In Situ Footprinting of E. coli Transcription Elongation Complex with Chloroacetaldehyde. In: Artsimovitch, I., Santangelo, T. (eds) Bacterial Transcriptional Control. Methods in Molecular Biology, vol 1276. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2392-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2392-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2391-5

  • Online ISBN: 978-1-4939-2392-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics