Skip to main content

Chromatin Imaging with Time-Lapse Atomic Force Microscopy

  • Protocol
Chromatin Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1288))

Abstract

Time-lapse atomic force microscopy (AFM) is widely used for direct visualization of the nanoscale dynamics of various biological systems. The advent of high-speed AFM instrumentation made it possible to image the dynamics of proteins and protein-DNA complexes within millisecond time range. This chapter describes protocols for studies of structure and dynamics of nucleosomes with time-lapse AFM including the high-speed AFM instrument. The necessary specifics for the preparation of chromatin samples for imaging with AFM including the protocols for the surface preparation are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  2. Luger K, Hansen JC (2005) Nucleosome and chromatin fiber dynamics. Curr Opin Struct Biol 15:188–196

    Article  CAS  PubMed  Google Scholar 

  3. Thoma F (2005) Repair of UV lesions in nucleosomes–intrinsic properties and remodeling. DNA Repair (Amst) 4:855–869

    Article  CAS  Google Scholar 

  4. Saha A, Wittmeyer J, Cairns BR (2006) Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7:437–447

    Article  CAS  PubMed  Google Scholar 

  5. Cairns BR (2007) Chromatin remodeling: insights and intrigue from single-molecule studies. Nat Struct Mol Biol 14:989–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Anderson JD, Thastrom A, Widom J (2002) Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation. Mol Cell Biol 22:7147–7157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ahmad K, Henikoff S (2002) Epigenetic consequences of nucleosome dynamics. Cell 111:281–284

    Article  CAS  PubMed  Google Scholar 

  8. Li G, Levitus M, Bustamante C, Widom J (2005) Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol 12:46–53

    Article  CAS  PubMed  Google Scholar 

  9. Bucceri A, Kapitza K, Thoma F (2006) Rapid accessibility of nucleosomal DNA in yeast on a second time scale. EMBO J 25:3123–3132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Koopmans WJ, Brehm A, Logie C, Schmidt T, van Noort J (2007) Single-pair FRET microscopy reveals mononucleosome dynamics. J Fluoresc 17:785–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lyubchenko YL, Shlyakhtenko LS (2009) AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. Methods 47:206–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Shlyakhtenko LS, Lushnikov AY, Lyubchenko YL (2009) Dynamics of nucleosomes revealed by time-lapse atomic force microscopy. Biochemistry 48:7842–7848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Uchihashi T, Kodera N, Ando T (2012) Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat Protoc 7:1193–1206

    Article  CAS  PubMed  Google Scholar 

  14. Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Penttila M, Ando T, Samejima M (2012) Visualization of cellobiohydrolase I from Trichoderma reesei moving on crystalline cellulose using high-speed atomic force microscopy. Methods Enzymol 510:169–182

    Article  CAS  PubMed  Google Scholar 

  15. Uchihashi T, Ando T (2011) High-speed atomic force microscopy and biomolecular processes. Methods Mol Biol 736:285–300

    Article  CAS  PubMed  Google Scholar 

  16. Lyubchenko YL, Shlyakhtenko LS, Ando T (2011) Imaging of nucleic acids with atomic force microscopy. Methods 54:274–283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Miyagi A, Ando T, Lyubchenko YL (2011) Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy. Biochemistry 50:7901–7908

    Article  CAS  PubMed  Google Scholar 

  18. Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276:19–42

    Article  CAS  PubMed  Google Scholar 

  19. Filenko NA, Kolar C, West JT, Smith SA, Hassan YI, Borgstahl GE, Zempleni J, Lyubchenko YL (2011) The role of histone H4 biotinylation in the structure of nucleosomes. PLoS One 6:e16299

    Article  PubMed Central  PubMed  Google Scholar 

  20. Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S, Muthurajan UM, Luger K (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23–44

    Article  CAS  PubMed  Google Scholar 

  21. Shlyakhtenko LS, Gall AA, Lyubchenko YL (2013) Mica functionalization for imaging of DNA and protein-DNA complexes with atomic force microscopy. Methods Mol Biol 931:295–312

    Article  CAS  PubMed  Google Scholar 

  22. Ando T, Kodera N (2012) Visualization of mobility by atomic force microscopy. Methods Mol Biol 896:57–69

    CAS  PubMed  Google Scholar 

  23. Lyubchenko YL (2011) Preparation of DNA and nucleoprotein samples for AFM imaging. Micron 42:196–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Lyubchenko lab and specifically N. Filenko and M. Atsushi for their contribution to the protocols on handling of nucleosomes for AFM imaging. The work is supported by grants from NIH (P01 GM091743, 1R01 GM096039) and NSF (EPS—1004094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri L. Lyubchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lyubchenko, Y.L., Shlyakhtenko, L.S. (2015). Chromatin Imaging with Time-Lapse Atomic Force Microscopy. In: Chellappan, S. (eds) Chromatin Protocols. Methods in Molecular Biology, vol 1288. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2474-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2474-5_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2473-8

  • Online ISBN: 978-1-4939-2474-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics