Skip to main content

Surface Plasmon Resonance for Therapeutic Antibody Characterization

  • Protocol
Label-Free Biosensor Methods in Drug Discovery

Abstract

The use of Surface Plasmon Resonance (SPR)-based optical biosensors contributes extensively to discovery and development of therapeutic monoclonal antibodies, owing to its ability to real-time analyze interactions of an antigen with an antibody without intrinsic or extrinsic labels. SPR has been a mainstay in pharmaceutical companies for almost two decades, and its role in drug discovery has experienced significant growth with the expanded number of therapeutic antibodies. Additionally, the burgeoning field of biosimilars depends on SPR to ascertain comparability to innovator mAbs. While the promise of the technology is exciting, the full role of SPR has yet to be realized. SPR has historically been hampered by limited throughput; however, new instruments and methods have emerged that allow for the analysis of up to thousands of biomolecular interactions per day. Here, we detail the use of traditional and emerging SPR techniques for characterizing monoclonal antibodies such as antigen/antibody kinetics, epitope profiling, and immunogenicity screening. In conjunction with efforts to improve throughput and sensitivity, SPR is expected to continue in its growth as a central technique in pharmaceutical discovery and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boozer C, Kim G, Cong S et al (2006) Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr Opin Biotechnol 17:400–405. doi:10.1016/j.copbio.2006.06.012

    CAS  PubMed  Google Scholar 

  2. Evans JB, Syed BA (2014) From the analyst’s couch: next-generation antibodies. Nat Rev Drug Discov 13(6):413–414

    CAS  PubMed  Google Scholar 

  3. Epstein MS, Ehrenpreis ED, Kulkarni PM (2014) Biosimilars: the need, the challenge, the future: the FDA perspective. Am J Gastroenterol 109:1856–1859. doi:10.1038/ajg.2014.151

    PubMed  Google Scholar 

  4. Sitte HH, Freissmuth M (2013) Biosimilars versus generics: scientific basics and clinical implications. Mag Eur Med Oncol 6(3):202–206

    Google Scholar 

  5. Walsh G (2014) Biopharmaceutical benchmarks. Nat Biotechnol 32:992–1000. doi:10.1038/nbt.3040

    CAS  PubMed  Google Scholar 

  6. Arnum PV (2013) Tracking growth in biologics. Pharm Technol 37:16

    Google Scholar 

  7. Rich RL, Myszka DG (2004) Why you should be using more SPR biosensor technology. Drug Discov Today Technol 1:301–308

    CAS  PubMed  Google Scholar 

  8. Myszka DG, Rich RL (2003) SPR’s high impact on drug discovery: resolution, throughput and versatility. Drug Discov World 49(1):49–55

    Google Scholar 

  9. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B Chem 54:3–15. doi:10.1016/S0925-4005(98)00321-9

    CAS  Google Scholar 

  10. Homola J, Piliarik M (2006) Surface plasmon resonance (SPR) sensors. In: Surface plasmon resonance sensors. Springer, p 45–67

    Google Scholar 

  11. Weingart CL, Broitman-Maduro G, Dean G et al (1999) Fluorescent labels influence phagocytosis of Bordetella pertussis by human neutrophils. Infect Immun 67:4264–4267

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Altschuh D, Dubs MC, Weiss E, Zeder-Lutz G, Van Regenmortel MHV (1992) Determination of kinetic constants for the interaction between a monoclonal antibody and peptides using surface plasmon resonance. Biochemistry 31(27):6298–6304

    CAS  PubMed  Google Scholar 

  13. Wammes AEM, Fischer MJE, de Mol NJ et al (2013) Site-specific peptide and protein immobilization on surface plasmon resonance chips via strain-promoted cycloaddition. Lab Chip 13:1863–1867. doi:10.1039/c3lc41338a

    CAS  PubMed  Google Scholar 

  14. Kooyman RPH, Corn RM, Frazier RA et al (2008) Handbook of surface plasmon resonance: RSC, 1st edn. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  15. Rich RL, Myszka DG (2008) Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 21:355–400

    CAS  PubMed  Google Scholar 

  16. Haab BB, Dunham MJ, Brown PO (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol 2(2)

    Google Scholar 

  17. MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–1763

    CAS  PubMed  Google Scholar 

  18. Houseman BT, Mrksich M (2002) Towards quantitative assays with peptide chips: a surface engineering approach. Trends Biotechnol 20:279–281. doi:10.1016/S0167-7799(02)01984-4

    CAS  PubMed  Google Scholar 

  19. Vijayendran RA, Leckband DE (2001) A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal Chem 73:471–480. doi:10.1021/ac000523p

    CAS  PubMed  Google Scholar 

  20. Firestone MA, Shank ML, Sligar SG, Bohn PW (1996) Film architecture in biomolecular assemblies. Effect of linker on the orientation of genetically engineered surface-bound proteins. J Am Chem Soc 118:9033–9041. doi:10.1021/ja961046o

    CAS  Google Scholar 

  21. Canziani GA, Klakamp S, Myszka DG (2004) Kinetic screening of antibodies from crude hybridoma samples using Biacore. Anal Biochem 325:301–307. doi:10.1016/j.ab.2003.11.004

    CAS  PubMed  Google Scholar 

  22. Natarajan S, Katsamba PS, Miles A et al (2008) Continuous-flow microfluidic printing of proteins for array-based applications including surface plasmon resonance imaging. Anal Biochem 373:141–146. doi:10.1016/j.ab.2007.07.035

    CAS  PubMed  Google Scholar 

  23. Leckband D (2000) Measuring the forces that control protein interactions. Annu Rev Biophys Biomol Struct 29:1–26. doi:10.1146/annurev.biophys.29.1.1

    CAS  PubMed  Google Scholar 

  24. Holmberg A, Blomstergren A, Nord O, Lukacs M, Lundeberg J, Uhlén M (2005) The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26(3):501–510

    CAS  PubMed  Google Scholar 

  25. Schuck P, Zhao H (2010) The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing. Methods Mol Biol 627:15–54. doi:10.1007/978-1-60761-670-2_2

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Drake AW, Myszka DG, Klakamp SL (2004) Characterizing high-affinity antigen/antibody complexes by kinetic- and equilibrium-based methods. Anal Biochem 328:35–43. doi:10.1016/j.ab.2003.12.025

    CAS  PubMed  Google Scholar 

  27. Myszka DG (1997) Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr Opin Biotechnol 8:50–57

    CAS  PubMed  Google Scholar 

  28. Karlsson R, Michaelsson A, Mattsson L (1991) Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J Immunol Methods 145:229–240. doi:10.1016/0022-1759(91)90331-9

    CAS  PubMed  Google Scholar 

  29. Christensen LLH (1997) Theoretical analysis of protein concentration determination using biosensor technology under conditions of partial mass transport limitation. Anal Biochem 249:153–164. doi:10.1006/abio.1997.2182

    CAS  PubMed  Google Scholar 

  30. Van Regenmortel MH, Altschuh D, Chatellier J et al (1998) Measurement of antigen-antibody interactions with biosensors. J Mol Recognit 11:163–167

    PubMed  Google Scholar 

  31. Myszka DG, He X, Dembo M et al (1998) Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data. Biophys J 75:583–594

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Myszka DG (1999) Improving biosensor analysis. J Mol Recognit 12:279–284

    CAS  PubMed  Google Scholar 

  33. Drake AW, Papalia GA (2012) Biophysical considerations for development of antibody-based therapeutics. In: Bornstein GG, Klakamp SL, Tabrizi MA (eds) Developments in antibody-based therapies. Springer, New York, NY, pp 95–139

    Google Scholar 

  34. Wijaya E, Lenaerts C, Maricot S et al (2011) Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies. Curr Opin Solid State Mater Sci 15:208–224. doi:10.1016/j.cossms.2011.05.001

    CAS  Google Scholar 

  35. Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719. doi:10.1016/j.progpolymsci.2012.09.001

    CAS  Google Scholar 

  36. Van Der Merwe PA (2001) Surface plasmon resonance. Oxford University Press, New York, NY

    Google Scholar 

  37. Andersson DI, Hughes D (2012) Evolution of antibiotic resistance at non-lethal drug concentrations. Drug Resist Updat 15:162–172. doi:10.1016/j.drup.2012.03.005

    CAS  PubMed  Google Scholar 

  38. Murphy M, Jason-Moller L, Bruno J (2001) Using Biacore to measure the binding kinetics of an antibody-antigen interaction. Curr Protoc Protein Sci. Chapter 19:Unit 19.14. doi: 10.1002/0471142301.ps1914s45

  39. Drake AW, Klakamp SL (2011) A strategic and systematic approach for the determination of biosensor regeneration conditions. J Immunol Methods 371:165–169. doi:10.1016/j.jim.2011.06.003

    CAS  PubMed  Google Scholar 

  40. Rich RL, Myszka DG (2000) Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotechnol 11:54–61

    CAS  PubMed  Google Scholar 

  41. Karlsson R, Fält A (1997) Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J Immunol Methods 200:121–133. doi:10.1016/S0022-1759(96)00195-0

    CAS  PubMed  Google Scholar 

  42. Katsamba PS, Navratilova I, Calderon-Cacia M et al (2006) Kinetic analysis of a high-affinity antibody/antigen interaction performed by multiple Biacore users. Anal Biochem 352:208–221. doi:10.1016/j.ab.2006.01.034

    CAS  PubMed  Google Scholar 

  43. Papalia GA, Baer M, Luehrsen K et al (2006) High-resolution characterization of antibody fragment/antigen interactions using Biacore T100. Anal Biochem 359:112–119. doi:10.1016/j.ab.2006.08.032

    CAS  PubMed  Google Scholar 

  44. Säfsten P, Klakamp SL, Drake AW et al (2006) Screening antibody–antigen interactions in parallel using Biacore A100. Anal Biochem 353:181–190. doi:10.1016/j.ab.2006.01.041

    PubMed  Google Scholar 

  45. Jason-Moller L, Murphy M, Bruno J (2006) Overview of Biacore systems and their applications. Curr Protoc Protein Sci. Chapter 19: Unit 19.13.doi:10.1002/0471140864.ps1913s45

  46. Morton TA, Myszka DG, Chaiken IM (1995) Interpreting complex binding kinetics from optical biosensors: a comparison of analysis by linearization, the integrated rate equation, and numerical integration. Anal Biochem 227:176–185. doi:10.1006/abio.1995.1268

    CAS  PubMed  Google Scholar 

  47. Mol NJ, Fischer MJE (2010) Surface plasmon resonance: a general introduction. In: Fischer MJE, Mol NJ (eds) Surface plasmon resonance. Humana, New York, NY, pp 1–14

    Google Scholar 

  48. O’Shannessy DJ (1994) Determination of kinetic rate and equilibrium binding constants for macromolecular interactions: a critique of the surface plasmon resonance literature. Curr Opin Biotechnol 5:65–71. doi:10.1016/S0958-1669(05)80072-2

    PubMed  Google Scholar 

  49. Cheskis B, Freedman LP (1996) Modulation of nuclear receptor interactions by ligands: kinetic analysis using surface plasmon resonance. Biochemistry (Mosc) 35:3309–3318. doi:10.1021/bi952283r

    CAS  Google Scholar 

  50. Heding A, Gill R, Ogawa Y et al (1996) Biosensor measurement of the binding of insulin-like growth factors i and ii and their analogues to the insulin-like growth factor-binding protein-3. J Biol Chem 271:13948–13952. doi:10.1074/jbc.271.24.13948

    CAS  PubMed  Google Scholar 

  51. Persson E, Ezban M, Shymko RM (1995) Kinetics of the interaction between the human factor VIIIa subunits: effects of pH, ionic strength, Ca2+ concentration, heparin, and activated protein C-catalyzed proteolysis. Biochemistry (Mosc) 34:12775–12781. doi:10.1021/bi00039a038

    CAS  Google Scholar 

  52. Gertler A, Grosclaude J, Strasburger CJ et al (1996) Real-time kinetic measurements of the interactions between lactogenic hormones and prolactin-receptor extracellular domains from several species support the model of hormone-induced transient receptor dimerization. J Biol Chem 271:24482–24491. doi:10.1074/jbc.271.40.24482

    CAS  PubMed  Google Scholar 

  53. Masson L, Lu Y, Mazza A et al (1995) The CryIA(c) receptor purified from Manduca sexta displays multiple specificities. J Biol Chem 270:20309–20315. doi:10.1074/jbc.270.35.20309

    CAS  PubMed  Google Scholar 

  54. Edlund M, Blikstad I, Öbrink B (1996) Calmodulin binds to specific sequences in the cytoplasmic domain of c-cam and down-regulates c-cam self-association. J Biol Chem 271:1393–1399. doi:10.1074/jbc.271.3.1393

    CAS  PubMed  Google Scholar 

  55. Raghavan M, Wang Y, Bjorkman PJ (1995) Effects of receptor dimerization on the interaction between the class I major histocompatibility complex-related Fc receptor and IgG. Proc Natl Acad Sci U S A 92:11200–11204

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Raghavan M, Bonagura VR, Morrison SL, Bjorkman PJ (1995) Analysis of the pH dependence of the neonatal Fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry (Mosc) 34:14649–14657

    CAS  Google Scholar 

  57. Sasaki T, Göhring W, Pan T et al (1995) Binding of mouse and human fibulin-2 to extracellular matrix ligands. J Mol Biol 254:892–899. doi:10.1006/jmbi.1995.0664

    CAS  PubMed  Google Scholar 

  58. Sundberg F (2009) Kinetics from SPR. Drug Discov Dev 12(2):22–24

    CAS  Google Scholar 

  59. Myszka DG, Morton TA, Doyle ML, Chaiken IM (1997) Kinetic analysis of a protein antigen-antibody interaction limited by mass transport on an optical biosensor. Biophys Chem 64:127–137. doi:10.1016/S0301-4622(96)02230-2

    CAS  PubMed  Google Scholar 

  60. Keighley W (2011) The need for high throughput kinetics early in the drug discovery process. Drug Discov World 12:39–45

    Google Scholar 

  61. Brooks BD (2014) The importance of epitope binning for biological drug discovery. Curr Drug Discov Technol 11(2):109–112

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Brooks BD, Miles A, Abdiche Y (2014) High-throughput epitope binning of therapeutic monoclonal antibodies: why you need to bin the fridge. Drug Discov Today 19(8):1040–1044. doi:10.1016/j.drudis.2014.05.011

    CAS  PubMed  Google Scholar 

  63. Abdiche Y, Malashock D, Pinkerton A, Pons J (2008) Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet. Anal Biochem 377:209–217. doi:10.1016/j.ab.2008.03.035

    CAS  PubMed  Google Scholar 

  64. Abdiche YN, Lindquist KC, Stone DM et al (2012) Label-free epitope binning assays of monoclonal antibodies enable the identification of antigen heterogeneity. J Immunol Methods 382:101–116. doi:10.1016/j.jim.2012.05.010

    CAS  PubMed  Google Scholar 

  65. Abdiche YN, Malashock DS, Pinkerton A, Pons J (2009) Exploring blocking assays using Octet, ProteOn, and Biacore biosensors. Anal Biochem 386:172–180. doi:10.1016/j.ab.2008.11.038

    CAS  PubMed  Google Scholar 

  66. Brooks BD, Albertson AE, Jones JA et al (2008) Efficient screening of high-signal and low-background antibody pairs in the bio-bar code assay using prion protein as the target. Anal Biochem 382:60–62. doi:10.1016/j.ab.2008.07.009

    CAS  PubMed  Google Scholar 

  67. Miller PL, Wolfert RL, Diedrich G (2011) Epitope binning of murine monoclonal antibodies by a multiplexed pairing assay. J Immunol Methods 365:118–125. doi:10.1016/j.jim.2010.12.021

    CAS  PubMed  Google Scholar 

  68. Lobo ED, Hansen RJ, Balthasar JP (2004) Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93:2645–2668. doi:10.1002/jps.20178

    CAS  PubMed  Google Scholar 

  69. Carter PJ (2011) Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res 317:1261–1269. doi:10.1016/j.yexcr.2011.02.013

    CAS  PubMed  Google Scholar 

  70. Luzzago A, Felici F, Tramontano A et al (1993) Mimicking of discontinuous epitopes by phage-displayed peptides, I. Epitope mapping of human H ferritin using a phage library of constrained peptides. Gene 128:51–57. doi:10.1016/0378-1119(93)90152-S

    CAS  PubMed  Google Scholar 

  71. Stephen CW, Lane DP (1992) Mutant conformation of p53: precise epitope mapping using a filamentous phage epitope library. J Mol Biol 225:577–583. doi:10.1016/0022-2836(92)90386-X

    CAS  PubMed  Google Scholar 

  72. Zuiderweg ERP (2002) Mapping protein–protein interactions in solution by NMR spectroscopy†. Biochemistry (Mosc) 41:1–7. doi:10.1021/bi011870b

    CAS  Google Scholar 

  73. Marciano DP, Dharmarajan V, Griffin PR (2014) HDX-MS guided drug discovery: small molecules and biopharmaceuticals. Curr Opin Struct Biol 28:105–111. doi:10.1016/j.sbi.2014.08.007

    CAS  PubMed  Google Scholar 

  74. Mihai S, Nimmerjahn F (2013) The role of Fc receptors and complement in autoimmunity. Autoimmun Rev 12:657–660. doi:10.1016/j.autrev.2012.10.008

    CAS  PubMed  Google Scholar 

  75. Rosales C, Uribe-Querol E (2013) Fc receptors: cell activators of antibody functions. Adv Biosci Biotechnol 4:21

    Google Scholar 

  76. Mellor JD, Brown MP, Irving HR et al (2013) A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. J Hematol Oncol 6:8722–8726

    Google Scholar 

  77. Clynes R (2006) Antitumor antibodies in the treatment of cancer: fc receptors link opsonic antibody with cellular immunity. Hematol Oncol Clin North Am 20:585–612. doi:10.1016/j.hoc.2006.02.010

    PubMed  Google Scholar 

  78. Nimmerjahn F, Ravetch JV (2012) Translating basic mechanisms of IgG effector activity into next generation cancer therapies. Cancer Immun 12:13

    PubMed Central  PubMed  Google Scholar 

  79. Lazar GA, Dang W, Karki S et al (2006) Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci U S A 103:4005–4010. doi:10.1073/pnas.0508123103

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Strohl WR (2009) Optimization of Fc-mediated effector functions of monoclonal antibodies. Curr Opin Biotechnol 20:685–691

    CAS  PubMed  Google Scholar 

  81. Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725

    CAS  PubMed  Google Scholar 

  82. Ober RJ, Radu CG, Ghetie V, Ward ES (2001) Differences in promiscuity for antibody–FcRn interactions across species: implications for therapeutic antibodies. Int Immunol 13:1551–1559

    CAS  PubMed  Google Scholar 

  83. Chen Y, Balthasar JP (2012) Evaluation of a catenary PBPK model for predicting the in vivo disposition of mAbs engineered for high-affinity binding to FcRn. AAPS J 14:850–859

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6:343–357. doi:10.1038/nri1837

    CAS  PubMed  Google Scholar 

  85. Patel R, Johnson KK, Andrien BA, Tamburini PP (2013) IGg subclass variation of a monoclonal antibody binding to human fc-gamma receptors. Am J Biochem Biotechnol 9:206

    CAS  Google Scholar 

  86. Li P, Jiang N, Nagarajan S et al (2007) Affinity and kinetic analysis of Fcgamma receptor IIIa (CD16a) binding to IgG ligands. J Biol Chem 282:6210–6221. doi:10.1074/jbc.M609064200

    CAS  PubMed  Google Scholar 

  87. Bruhns P, Iannascoli B, England P et al (2009) Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood 113:3716–3725

    CAS  PubMed  Google Scholar 

  88. Kiese S, Papppenberger A, Friess W, Mahler H-C (2008) Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci 97:4347–4366. doi:10.1002/jps.21328

    CAS  PubMed  Google Scholar 

  89. Fincke A, Winter J, Bunte T, Olbrich C (2014) Thermally induced degradation pathways of three different antibody-based drug development candidates. Eur J Pharm Sci 62:148–160. doi:10.1016/j.ejps.2014.05.014

    CAS  PubMed  Google Scholar 

  90. Bhatnagar BS, Bogner RH, Pikal MJ (2007) Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol 12:505–523

    CAS  PubMed  Google Scholar 

  91. Haberger M, Bomans K, Diepold K, et al. (2014) Assessment of chemical modifications of sites in the CDRs of recombinant antibodies: Susceptibility vs. functionality of critical quality attributes. mAbs. Landes Bioscience, p 327

    Google Scholar 

  92. Chumsae C, Gaza-Bulseco G, Sun J, Liu H (2007) Comparison of methionine oxidation in thermal stability and chemically stressed samples of a fully human monoclonal antibody. J Chromatogr B 850:285–294

    CAS  Google Scholar 

  93. Rich RL, Miles AR, Gale BK, Myszka DG (2009) Detergent screening of a G-protein-coupled receptor using serial and array biosensor technologies. Anal Biochem 386:98–104. doi:10.1016/j.ab.2008.12.011

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Locatelli-Hoops S, Yeliseev AA, Gawrisch K, Gorshkova I (2013) Surface plasmon resonance applied to G protein-coupled receptors. Biomed Spectrosc Imaging 2:155–181. doi:10.3233/BSI-130045

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Stenlund P, Babcock GJ, Sodroski J, Myszka DG (2003) Capture and reconstitution of G protein-coupled receptors on a biosensor surface. Anal Biochem 316:243–250

    CAS  PubMed  Google Scholar 

  96. Parrill AL (2008) Crystal structures of a second g protein-coupled receptor: triumphs and implications. ChemMedChem 3:1021–1023. doi:10.1002/cmdc.200800070

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996. doi:10.1038/nrd2199

    CAS  PubMed  Google Scholar 

  98. Hutchings CJ, Koglin M, Marshall FH (2010) Therapeutic antibodies directed at G protein-coupled receptors. mAbs 2:594–606. doi:10.4161/mabs.2.6.13420

    PubMed Central  PubMed  Google Scholar 

  99. Karlsson OP, Löfås S (2002) Flow-mediated on-surface reconstitution of g-protein coupled receptors for applications in surface plasmon resonance biosensors. Anal Biochem 300:132–138. doi:10.1006/abio.2001.5428

    CAS  PubMed  Google Scholar 

  100. Hodnik V, Anderluh G (2010) Capture of intact liposomes on biacore sensor chips for protein–membrane interaction studies. In: Fischer MJE, Mol NJ (eds) Surface plasmon reson. Humana, New York, NY, pp 201–211

    Google Scholar 

  101. Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1:515–528

    CAS  PubMed  Google Scholar 

  102. Cooper MA, Hansson A, Löfås S, Williams DH (2000) A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. Anal Biochem 277:196–205. doi:10.1006/abio.1999.4389

    CAS  PubMed  Google Scholar 

  103. Johnsson B, Löfås S, Lindquist G (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198:268–277. doi:10.1016/0003-2697(91)90424-R

    CAS  PubMed  Google Scholar 

  104. Navratilova I, Dioszegi M, Myszka DG (2006) Analyzing ligand and small molecule binding activity of solubilized GPCRs using biosensor technology. Anal Biochem 355:132–139

    CAS  PubMed  Google Scholar 

  105. Mirzabekov T, Kontos H, Farzan M et al (2000) Paramagnetic proteoliposomes containing a pure, native, and oriented seven-transmembrane segment protein, CCR5. Nat Biotechnol 18:649–654. doi:10.1038/76501

    CAS  PubMed  Google Scholar 

  106. Babcock GJ, Mirzabekov T, Wojtowicz W, Sodroski J (2001) ligand binding characteristics of cxcr4 incorporated into paramagnetic proteoliposomes. J Biol Chem 276:38433–38440. doi:10.1074/jbc.M106229200

    CAS  PubMed  Google Scholar 

  107. Chen L, Jin L, Zhou N (2012) An update of novel screening methods for GPCR in drug discovery. Expert Opin Drug Discov 7:791–806. doi:10.1517/17460441.2012.699036

    CAS  PubMed  Google Scholar 

  108. Harding PJ, Hadingham TC, McDonnell JM, Watts A (2006) Direct analysis of a GPCR-agonist interaction by surface plasmon resonance. Eur Biophys J 35:709–712. doi:10.1007/s00249-006-0070-x

    CAS  PubMed  Google Scholar 

  109. Hwang WYK, Foote J (2005) Immunogenicity of engineered antibodies. Methods 36:3–10

    CAS  PubMed  Google Scholar 

  110. Wright A, Shin S-U, Morrison SL (1991) Genetically engineered antibodies: progress and prospects. Crit Rev Immunol 12:125–168

    Google Scholar 

  111. De Groot AS et al (2008) Prediction of immunogenicity: in silico paradigms, ex vivo and in vivo correlates. Curr Opin Pharmacol 8:620–626. doi:10.1016/j.coph.2008.08.002

    PubMed  Google Scholar 

  112. Harding FA, Stickler MM, Razo J, Du Bridge RB (2010) The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. mAbs 2:256–265

    PubMed Central  PubMed  Google Scholar 

  113. Cheung NK, Guo H, Hu J et al (2012) Humanizing murine IgG3 anti-GD2 antibody m3F8 substantially improves antibody-dependent cell-mediated cytotoxicity while retaining targeting in vivo. Oncoimmunology 1:477–486

    PubMed Central  PubMed  Google Scholar 

  114. Kaliyaperumal A, Pennucci J, Nagatani J et al (2014) A method to quantitate the neutralizing capacity of anti-therapeutic protein antibodies in serum and their correlation to clinical impact. J Pharm Biomed Anal 102C:176–183. doi:10.1016/j.jpba.2014.09.009

    Google Scholar 

  115. Mikulskis A, Yeung D, Subramanyam M, Amaravadi L (2011) Solution ELISA as a platform of choice for development of robust, drug tolerant immunogenicity assays in support of drug development. J Immunol Methods 365:38–49

    CAS  PubMed  Google Scholar 

  116. Nechansky A (2010) HAHA–nothing to laugh about. Measuring the immunogenicity (human anti-human antibody response) induced by humanized monoclonal antibodies applying ELISA and SPR technology. J Pharm Biomed Anal 51:252–254

    CAS  PubMed  Google Scholar 

  117. Barbosa MD, Gokemeijer J, Martin AD, Bush A (2013) Altering drug tolerance of surface plasmon resonance assays for the detection of anti-drug antibodies. Anal Biochem 441:174–179

    CAS  PubMed  Google Scholar 

  118. Lofgren JA, Dhandapani S, Pennucci JJ et al (2007) Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab. J Immunol 178:7467–7472

    CAS  PubMed  Google Scholar 

  119. Weeraratne DK, Lofgren J, Dinnogen S et al (2013) Development of a biosensor-based immunogenicity assay capable of blocking soluble drug target interference. J Immunol Methods 396:44–55

    CAS  PubMed  Google Scholar 

  120. Elvin JG, Couston RG, van der Walle CF (2013) Therapeutic antibodies: market considerations, disease targets and bioprocessing. Int J Pharm 440:83–98. doi:10.1016/j.ijpharm.2011.12.039

    CAS  PubMed  Google Scholar 

  121. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136. doi:10.1038/nbt1142

    CAS  PubMed  Google Scholar 

  122. Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352. doi:10.1038/nri2747

    CAS  PubMed  Google Scholar 

  123. Nelson AL, Reichert JM (2009) Development trends for therapeutic antibody fragments. Nat Biotechnol 27:331–337

    CAS  PubMed  Google Scholar 

  124. Steukers M, Schaus J-M, van Gool R et al (2006) Rapid kinetic-based screening of human Fab fragments. J Immunol Methods 310:126–135. doi:10.1016/j.jim.2006.01.002

    CAS  PubMed  Google Scholar 

  125. Wassaf D, Kuang G, Kopacz K et al (2006) High-throughput affinity ranking of antibodies using surface plasmon resonance microarrays. Anal Biochem 351:241–253. doi:10.1016/j.ab.2006.01.043

    CAS  PubMed  Google Scholar 

  126. Hoogenboom HR, de Bruïne AP, Hufton SE et al (1998) Antibody phage display technology and its applications. Immunotechnology 4:1–20. doi:10.1016/S1380-2933(98)00007-4

    CAS  PubMed  Google Scholar 

  127. Kehoe JW, Kay BK (2005) Filamentous phage display in the new millennium. Chem Rev 105:4056–4072. doi:10.1021/cr000261r

    CAS  PubMed  Google Scholar 

  128. Azzazy HME, Highsmith WE Jr (2002) Phage display technology: clinical applications and recent innovations. Clin Biochem 35:425–445. doi:10.1016/S0009-9120(02)00343-0

    CAS  PubMed  Google Scholar 

  129. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23:1105–1116. doi:10.1038/nbt1126

    CAS  PubMed  Google Scholar 

  130. Mondon P (2008) Human antibody libraries: a race to engineer and explore a larger diversity. Front Biosci 13:1117. doi:10.2741/2749

    CAS  PubMed  Google Scholar 

  131. Conroy PJ, Hearty S, Leonard P, O’Kennedy RJ (2009) Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol 20:10–26. doi:10.1016/j.semcdb.2009.01.010

    CAS  PubMed  Google Scholar 

  132. Bradbury AR, Marks JD (2004) Antibodies from phage antibody libraries. J Immunol Methods 290:29–49

    CAS  PubMed  Google Scholar 

  133. Leonard P, Säfsten P, Hearty S et al (2007) High throughput ranking of recombinant avian scFv antibody fragments from crude lysates using the Biacore A100. J Immunol Methods 323:172–179. doi:10.1016/j.jim.2007.04.010

    CAS  PubMed  Google Scholar 

  134. Bravman T, Bronner V, Lavie K et al (2006) Exploring “one-shot” kinetics and small molecule analysis using the ProteOn XPR36 array biosensor. Anal Biochem 358:281–288. doi:10.1016/j.ab.2006.08.005

    CAS  PubMed  Google Scholar 

  135. Rich RL, Quinn JG, Morton T et al (2010) Biosensor-based fragment screening using FastStep injections. Anal Biochem 407:270–277

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Shepherd CA, Hopkins AL, Navratilova I (2014) Fragment screening by SPR and advanced application to GPCRs. Prog Biophys Mol Biol 116:113–123. doi:10.1016/j.pbiomolbio.2014.09.008, pii: S0079-6107(14)00110-2

    CAS  PubMed  Google Scholar 

  137. Chardin H et al (2014) Surface Plasmon Resonance imaging: a method to measure the affinity of the antibodies in allergy diagnosis. J Immunol Methods 405:23–28. doi:10.1016/j.jim.2013.12.010

    CAS  PubMed  Google Scholar 

  138. Schasfoort R, de Lau W, van der Kooi A et al (2012) Method for estimating the single molecular affinity. Anal Biochem 421:794–796

    CAS  PubMed  Google Scholar 

  139. Liu S, Zhu JH, He LP et al (2014) Label-free, real-time detection of the dynamic processes of protein degradation using oblique-incidence reflectivity difference method. Appl Phys Lett 104:163701. doi:10.1063/1.4873676

    PubMed Central  PubMed  Google Scholar 

  140. Wöllner K, Chen X, Kremmer E, Krämer PM (2010) Comparative surface plasmon resonance and enzyme-linked immunosorbent assay characterisation of a monoclonal antibody with N-acyl homoserine lactones. Anal Chim Acta 683:113–118. doi:10.1016/j.aca.2010.10.015

    PubMed  Google Scholar 

  141. Thorpe R, Swanson SJ (2005) Assays for detecting and diagnosing antibody-mediated pure red cell aplasia (PRCA): an assessment of available procedures. Nephrol Dial Transplant 20:16–22. doi:10.1093/ndt/gfh1086

    Google Scholar 

  142. Heinrich L, Tissot N, Hartmann DJ, Cohen R (2010) Comparison of the results obtained by ELISA and surface plasmon resonance for the determination of antibody affinity. J Immunol Methods 352:13–22. doi:10.1016/j.jim.2009.10.002

    CAS  PubMed  Google Scholar 

  143. Tacey R, Greway A, Smiell J et al (2003) The detection of anti-erythropoietin antibodies in human serum and plasma. Part I. Validation of the protocol for a radioimmunoprecipitation assay. J Immunol Methods 283:317–329

    CAS  PubMed  Google Scholar 

  144. Jecklin MC, Schauer S, Dumelin CE, Zenobi R (2009) Label-free determination of protein-ligand binding constants using mass spectrometry and validation using surface plasmon resonance and isothermal titration calorimetry. J Mol Recognit 22:319–329. doi:10.1002/jmr.951

    CAS  PubMed  Google Scholar 

  145. Azzam RMA, Rigby PG, Krueger JA (1977) Kinetics of protein adsorption and immunological reactions at a liquid/solid interface by ellipsometry. Phys Med Biol 22:422. doi:10.1088/0031-9155/22/3/002

    CAS  PubMed  Google Scholar 

  146. Ndieyira JW, Watari M, Barrera AD et al (2008) Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance. Nat Nanotechnol 3:691–696. doi:10.1038/nnano.2008.275

    CAS  PubMed  Google Scholar 

  147. Ciambrone GJ, Liu VF, Lin DC et al (2004) Cellular dielectric spectroscopy: a powerful new approach to label-free cellular analysis. J Biomol Screen 9:467–480. doi:10.1177/1087057104267788

    CAS  PubMed  Google Scholar 

  148. Peters MF, Vaillancourt F, Heroux M et al (2010) Comparing label-free biosensors for pharmacological screening with cell-based functional assays. Assay Drug Dev Technol 8:219–227. doi:10.1089/adt.2009.0232

    CAS  PubMed  Google Scholar 

  149. Chua JH, Chee R-E, Agarwal A et al (2009) Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Anal Chem 81:6266–6271. doi:10.1021/ac901157x

    CAS  PubMed  Google Scholar 

  150. Navratilova I (2005) Measuring long association phases using Biacore. Anal Biochem 344:295–297. doi:10.1016/j.ab.2005.05.025

    CAS  PubMed  Google Scholar 

  151. Abdiche YN, Malashock DS, Pons J (2008) Probing the binding mechanism and affinity of tanezumab, a recombinant humanized anti-NGF monoclonal antibody, using a repertoire of biosensors. Protein Sci 17:1326–1335. doi:10.1110/ps.035402.108

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857. doi:10.1021/cr100313v

    CAS  PubMed  Google Scholar 

  153. Sun Y-S, Landry JP, Fei Y, Zhu X (2013) An oblique-incidence reflectivity difference study of the dependence of probe-target reaction constants on surface target density using streptavidin-biotin reactions as a model. Instrum Sci Technol 41:535–544. doi:10.1080/10739149.2013.775590

    CAS  Google Scholar 

  154. Concepcion J, Witte K, Wartchow C et al (2009) Label-free detection of biomolecular interactions using biolayer interferometry for kinetic characterization. Comb Chem High Throughput Screen 12:791–800

    CAS  PubMed  Google Scholar 

  155. Chiu Y-W, Li QX, Karu AE (2001) Selective binding of polychlorinated biphenyl congeners by a monoclonal antibody: analysis by kinetic exclusion fluorescence immunoassay. Anal Chem 73:5477–5484. doi:10.1021/ac0102462

    CAS  PubMed  Google Scholar 

  156. Murphy KP, Freire E, Paterson Y (1995) Configurational effects in antibody–antigen interactions studied by microcalorimetry. Proteins Struct Funct Bioinforma 21:83–90. doi:10.1002/prot.340210202

    CAS  Google Scholar 

  157. Leder L, Berger C, Bornhauser S et al (1995) Spectroscopic, calorimetric, and kinetic demonstration of conformational adaptation in peptide-antibody recognition. Biochemistry (Mosc) 34:16509–16518

    CAS  Google Scholar 

  158. Kreimann M, Brandt S, Krauel K et al (2014) Interaction between platelet factor 4 and heparins: thermodynamics determines conformational changes required for binding of anti-platelet factor 4/heparin antibodies. Blood. doi: 10.1182/blood-2014-03-559518

    Google Scholar 

  159. Ciulli A (2013) Biophysical screening for the discovery of small-molecule ligands. Methods Mol Biol 1008:357–388. doi:10.1007/978-1-62703-398-5_13

    CAS  PubMed  Google Scholar 

  160. Gell DA, Grant RP, Mackay JP (2012) The detection and quantitation of protein oligomerization. Adv Exp Med Biol 747:19–41. doi:10.1007/978-1-4614-3229-6_2

    CAS  PubMed  Google Scholar 

  161. Fleming MR, Shamah SM, Kaczmarek LK (2014) Use of label-free optical biosensors to detect modulation of potassium channels by G-protein coupled receptors. J Vis Exp 84:e51307. doi:10.3791/51307

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin D. Brooks Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Davidoff, S.N., Ditto, N.T., Brooks, A.E., Eckman, J., Brooks, B.D. (2015). Surface Plasmon Resonance for Therapeutic Antibody Characterization. In: Fang, Y. (eds) Label-Free Biosensor Methods in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2617-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2617-6_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2616-9

  • Online ISBN: 978-1-4939-2617-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics