Skip to main content

Optical Waveguide Light-Mode Spectroscopy for Ion Channel Profiling

  • Protocol
Label-Free Biosensor Methods in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Ion channel-based biosensors using label-free optical waveguide light-mode spectroscopy (OWLS) technique provide a sensitive measurement method of trans-channel ion transport, and allow further development in utilization of ion channels as models for pharmacological purposes (drug design targeting ion channels or diagnostic applications in clinical trials). This chapter describes a sensor setup for supported cell-derived membrane fragments deposited onto a hydrophilic polytetrafluoroethylene membrane with further separation from the OWLS sensor surface by a thin polyethylene terephthalate membrane. This approach provides spatial separation between the lipid layer and the sensor surface, and also allows space for possible extramembranous domains of the inbuilt membrane channel proteins. Influx of Cl ions through GABAA channels in the presence or absence of GABA and channel blocking agent bicuculline is measured by changes of the optical characteristics in the evanescent field at near proximity of the OWLS sensor surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fang Y (2007) Label-free optical biosensors in drug discovery. Trends Bio/Pharm Ind 3:34–38

    Google Scholar 

  2. Cornell BA, Braach-Maksvytis VLB, King LG, Osman PDJ, Raguse B, Wieczorek L, Pace RJ (1997) A biosensor that uses ion-channel switches. Nature 387:580–583. doi:10.1038/42432

    Article  CAS  PubMed  Google Scholar 

  3. Misra N, Martinez JA, Huang SCJ, Wang Y, Stroeve P, Grigoropoulos CP, Noy A (2009) Bioelectronic silicon nanowire devices using functional membrane proteins. Proc Natl Acad Sci U S A 106:13780–13784. doi:10.1073/pnas.0904850106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wright LS, Harding MM (2000) Detection of DNA via an ion channel switch biosensor. Anal Biochem 282:70–79. doi:10.1006/abio.2000.4568

    Article  Google Scholar 

  5. He L, Robertson JWF, Li J, Kärcher I, Schiller SM, Knoll W, Naumann R (2005) Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides. Langmuir 21:11666–11672. doi:10.1021/la051771p

    Article  CAS  PubMed  Google Scholar 

  6. Brändén M, Dahlin S, Höök F (2008) Label-free measurements of molecular transport across liposome membranes using evanescent-wave sensing. ChemPhysChem 9:2480–2485. doi:10.1002/cphc.200800614

    Article  PubMed  Google Scholar 

  7. Mayer M, Kriebel JK, Tosteson MT, Whitesides GM (2003) Microfabricated Teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. Biophys J 85:2684–2695. doi:10.1016/S0006-3495(03)74691-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Yin P, Burns CJ, Osman PDJ, Cornell BA (2003) A tethered bilayer sensor containing alamethicin channels and its detection of amiloride based inhibitors. Biosens Bioelectron 18:389–397. doi:10.1016/S0956-5663(02)00160-4

    Article  CAS  PubMed  Google Scholar 

  9. Bayley H (1999) Designed membrane channels and pores. Curr Opin Biotechnol 10:94–103. doi:10.1016/S0958-1669(99)80017-2

    Article  CAS  PubMed  Google Scholar 

  10. Majd S, Yusko EC, Billeh YN, Macrae MX, Yang J, Mayer M (2010) Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr Opin Biotechnol 21:439–476. doi:10.1016/j.copbio.2010.05.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ramsden J, Hucho F, Vogel H (1992) Membrane protein receptors in supported lipid bilayers as biosensors. In: Scheller F, Schmid RD (eds) Biosensors: fundamentals, technologies and applications, vol 17, Gbf Monographs. VCH Publishers, New York, pp 435–441

    Google Scholar 

  12. Székács I, Kaszás N, Gróf P, Erdélyi K, Szendrő I, Mihalik B, Pataki A, Antoni FA, Madarász E (2013) Optical waveguide lightmode spectroscopic techniques for investigating membrane-bound ion channel activities. PLoS One 8:12013. doi:10.1371/journal.pone.0081398

    Article  Google Scholar 

  13. Bally M, Bailey K, Sugihara K, Grieshaber D, Vörös J, Städler B (2010) Liposome and bilayer arrays towards biosensing applications. Small 6:2481–2497. doi:10.1002/smll.201000644

    Article  CAS  PubMed  Google Scholar 

  14. Heimburg T (2010) Lipid ion channels. Biophys Chem 150:2–22. doi:10.1016/j.bpc.2010.02.018

    Article  CAS  PubMed  Google Scholar 

  15. Castellana ET, Cremer PS (2006) Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep 61:429–444

    Article  CAS  Google Scholar 

  16. Richter RP, Bérat R, Brisson AR (2006) Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22:3497–3505. doi:10.1021/la052687c

    Article  CAS  PubMed  Google Scholar 

  17. Heyse S, Vogel H, Sänger M, Sigrist H (1995) Covalent attachment of functionalized lipid bilayers to planar waveguides for measuring protein binding to biomimetic membranes. Protein Sci 4:2532–2544. doi:10.1002/pro.5560041210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kugler R, Knoll W (2002) Polyelectrolyte-supported lipid membranes. Bioelectro-chemistry 56:175–178. doi:10.1016/S1567-5394(02)00031-2

    Article  CAS  Google Scholar 

  19. Jadhav SR, Sui D, Garavito RM, Worden RM (2008) Fabrication of highly insulating tethered bilayer lipid membrane using yeast cell membrane fractions for measuring ion channel activity. J Colloid Interf Sci 322:465–472. doi:10.1016/j.jcis.2008.02.064

    Article  CAS  Google Scholar 

  20. Kitta M, Tanaka H, Kawai T (2009) Rapid fabrication of Teflon micropores for artificial lipid bilayer formation. Biosens Bioelectron 25:931–934. doi:10.1016/j.bios.2009.08.021

    Article  CAS  PubMed  Google Scholar 

  21. Phung T, Zhang Y, Dunlop J, Dalziel J (2011) Bilayer lipid membranes supported on Teflon filters: a functional environment for ion channels. Biosens Bioelectron 26:3127–3135. doi:10.1016/j.bios.2010.12.013

    Article  CAS  PubMed  Google Scholar 

  22. Neher E, Sakmann B (1992) The patch clamp technique. Sci Am 266:44–51

    Article  CAS  PubMed  Google Scholar 

  23. Homola J (2006) Surface plasmon resonance based sensors. Springer, Berlin

    Book  Google Scholar 

  24. Vörös J, Ramsden JJ, Csúcs G, Szendro I, De Paul SM, Textor M, Spencer ND (2002) Optical grating coupler biosensors. Biomaterials 23:3699–3710

    Article  PubMed  Google Scholar 

  25. Merz C, Knoll W, Textor M, Reimhult E (2008) Formation of supported bacterial lipid membrane mimics. Biointerphases 3:FA41–FA50. doi:10.1116/1.2896119

    Article  CAS  PubMed  Google Scholar 

  26. Horváth R, Fricsovszky G, Papp E (2003) Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition. Biosens Bioelectron 18:415–428. doi:10.1016/S0956-5663(02)00154-9

    Article  PubMed  Google Scholar 

  27. Sugihara K, Delai M, Szendro I, Guillaume-Gentil O, Vörös J, Zambelli T (2012) Simultaneous OWLS and EIS monitoring of supported lipid bilayers with the pore forming peptide melittin. Sensor Actuat B Chem 161:600–606. doi:10.1016/j.snb.2011.11.007

    Article  CAS  Google Scholar 

  28. Moscho A, Orwar O, Chiu DT, Modi BP, Zare RN (1996) Rapid preparation of giant unilamellar vesicles. Proc Natl Acad Sci U S A 93:11443–11447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. MicroVacuum. http://owls-sensors.com. Accessed Sep 2014

  30. Tiefenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J Opt Soc Am B 6:209–220

    Article  CAS  Google Scholar 

  31. Ramsden J (1993) Review of new experimental techniques for investigating random sequential adsorption. J Stat Phys 73:853–877

    Article  Google Scholar 

  32. Székács A, Adányi N, Székács I, Majer-Baranyi K, Szendro I (2009) Optical waveguide light-mode spectroscopy immunosensors for environmental monitoring. Appl Opt 48:B151–B158. doi:10.1364/AO.48.00B151

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author expresses her sincere appreciation to her coworkers in the study that resulted in the original publication related to this protocol report. Particular thanks are due to Emilia Madarász (Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary), István Szendrő and Katalin Erdélyi (Microvacuum Ltd., Budapest, Hungary), Pál Gróf and Nóra Kaszás (Semmelweis University, Budapest, Hungary), as well as Ferenc A. Anthony, Balázs Mihalik, and Ágnes Pataki (EGIS Pharmaceutical Co., Budapest, Hungary) for their contribution, technical support, and helpful discussions in the OWLS technique, liposome preparation, and HEK293 cell line, expressing GABAA (α5, β2, γ2) receptors, respectively. The material support by Oxyphen GmbH (Zürich, Switzerland) by providing samples of RoTrack membranes is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna Székács .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Székács, I. (2015). Optical Waveguide Light-Mode Spectroscopy for Ion Channel Profiling. In: Fang, Y. (eds) Label-Free Biosensor Methods in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2617-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2617-6_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2616-9

  • Online ISBN: 978-1-4939-2617-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics