Skip to main content

Penetratin Story: An Overview

  • Protocol
Cell-Penetrating Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1324))

Abstract

Cell-penetrating peptides are short, often hydrophilic peptides that get access to the intracellular milieu. They have aroused great interest both in academic and applied research. First, cellular internalization of CPPs often involves the crossing of a biological membrane (plasma or vesicular), thus challenging the view of the non-permeability of these structures to large hydrophilic molecules. Secondly, CPPs can drive the internalization of hydrophilic cargoes into cells, a rate-limiting step in the development of many therapeutic substances. Interestingly, the two most used CPPs, TAT and penetratin peptides, are derived from natural proteins, HIV Tat and Antennapedia homeoprotein, respectively. The identification of the penetratin peptide, summarized in this review, is intimately linked to the study of its parental natural protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  CAS  PubMed  Google Scholar 

  2. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188

    Article  CAS  PubMed  Google Scholar 

  3. Denis-Donini S, Glowinski J, Prochiantz A (1984) Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurones. Nature 307:641–643

    Article  CAS  PubMed  Google Scholar 

  4. Chamak B, Fellous A, Glowinski J, Prochiantz A (1987) MAP2 expression and neuritic outgrowth and branching are coregulated through region-specific neuro-astroglial interactions. J Neurosci 7:3163–3170

    CAS  PubMed  Google Scholar 

  5. Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF, Resendez-Perez D, Affolter M, Otting G, Wüthrich K (1994) Homeodomain-DNA recognition. Cell 78:211–223

    Article  CAS  PubMed  Google Scholar 

  6. Ayala J, Touchot N, Zahraoui A, Tavitian A, Prochiantz A (1990) The product of rab2, a small GTP binding protein, increases neuronal adhesion, and neurite growth in vitro. Neuron 4:797–805

    Article  CAS  PubMed  Google Scholar 

  7. Borasio GD, John J, Wittinghofer A, Barde YA, Sendtner M, Heumann R (1989) ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons. Neuron 2:1087–1096

    Article  CAS  PubMed  Google Scholar 

  8. Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A (1991) Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A 88:1864–1868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bloch-Gallego E, Le Roux I, Joliot A, Volovitch M, Henderson CE, Prochiantz A (1993) Antennapedia homeobox peptide enhances growth and branching of embryonic chicken motoneurons in vitro. J Cell Biol 120:485–492

    Article  CAS  PubMed  Google Scholar 

  10. Le Roux I, Joliot AH, Bloch-Gallego E, Prochiantz A, Volovitch M (1993) Neurotrophic activity of the Antennapedia homeodomain depends on its specific DNA-binding properties. Proc Natl Acad Sci U S A 90:9120–9124

    Article  PubMed Central  PubMed  Google Scholar 

  11. Le Roux I, Duharcourt S, Volovitch M, Prochiantz A, Ronchi E (1995) Promoter-specific regulation of gene expression by an exogenously added homeodomain that promotes neurite growth. FEBS Lett 368:311–314

    Article  PubMed  Google Scholar 

  12. Joliot A, Triller A, Volovitch M, Pernelle C, Prochiantz A (1991) alpha-2,8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. New Biol 3:1121–1134

    CAS  PubMed  Google Scholar 

  13. Derossi D, Joliot A, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    CAS  PubMed  Google Scholar 

  14. Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8:848–866

    Article  CAS  PubMed  Google Scholar 

  15. Maiolo JR, Ferrer M, Ottinger EA (2005) Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides. Biochim Biophys Acta 1712:161–172

    Article  CAS  PubMed  Google Scholar 

  16. Manceur A, Wu A, Audet J (2007) Flow cytometric screening of cell-penetrating peptides for their uptake into embryonic and adult stem cells. Anal Biochem 364:51–59

    Article  CAS  PubMed  Google Scholar 

  17. Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y, Takehashi M, Tanaka S, Ueda K, Simpson JC et al (2004) Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther 10:1011–1022

    Article  CAS  PubMed  Google Scholar 

  18. Balayssac S, Burlina F, Convert O, Bolbach G, Chassaing G, Lequin O (2006) Comparison of penetratin and other homeodomain-derived cell-penetrating peptides: interaction in a membrane-mimicking environment and cellular uptake efficiency. Biochemistry 45:1408–1420

    Article  CAS  PubMed  Google Scholar 

  19. Harreither E, Rydberg HA, Amand HL, Jadhav V, Fliedl L, Benda C, Esteban MA, Pei D, Borth N, Grillari-Voglauer R et al (2014) Characterization of a novel cell penetrating peptide derived from human Oct4. Cell Regen (Lond) 3:2

    Article  Google Scholar 

  20. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 271:18188–18193

    Article  CAS  PubMed  Google Scholar 

  21. Binder H, Lindblom G (2003) Charge-dependent translocation of the Trojan peptide penetratin across lipid membranes. Biophys J 85:982–995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Christiaens B, Symoens S, Verheyden S, Engelborghs Y, Joliot A, Prochiantz A, Vandekerckhove J, Rosseneu M, Vanloo B, Vanderheyden S (2002) Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur J Biochem 269:2918–2926

    Article  CAS  PubMed  Google Scholar 

  23. Persson D, Thorén PE, Nordén B (2001) Penetratin-induced aggregation and subsequent dissociation of negatively charged phospholipid vesicles. FEBS Lett 505:307–312

    Article  CAS  PubMed  Google Scholar 

  24. Fragneto G, Bellet-Amalric E, Charitat T, Dubos P, Graner F, Perino-Galice L (2000) Neutron and X-ray reflectivity studies at solid-liquid interfaces: the interaction of a peptide with model membranes. Phys Rev B Condens Matter 276–278:501–502

    Article  Google Scholar 

  25. Fragneto G, Graner F, Charitat T, Dubos P, Bellet-Amalric E (2000) Interaction of the third helix of antennapedia homeodomain with a deposited phospholipid bilayer: a neutron reflectivity structural study. Langmuir 16:4581–4588

    Article  CAS  Google Scholar 

  26. Björklund J, Biverståhl H, Gräslund A, Mäler L, Brzezinski P (2006) Real-time transmembrane translocation of penetratin driven by light-generated proton pumping. Biophys J 91:L29–L31

    Article  PubMed Central  PubMed  Google Scholar 

  27. Magzoub M, Pramanik A, Gräslund A (2005) Modeling the endosomal escape of cell-penetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers. Biochemistry 44:14890–14897

    Article  CAS  PubMed  Google Scholar 

  28. Su Y, Mani R, Hong M (2008) Asymmetric insertion of membrane proteins in lipid bilayers by solid-state NMR paramagnetic relaxation enhancement: a cell-penetrating Peptide example. J Am Chem Soc 130:8856–8864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bárány-Wallje E, Keller S, Serowy S, Geibel S, Pohl P, Bienert M, Dathe M (2005) A critical reassessment of penetratin translocation across lipid membranes. Biophys J 89:2513–2521

    Article  PubMed Central  PubMed  Google Scholar 

  30. Persson D, Thorén PEG, Esbjörner EK, Goksör M, Lincoln P, Nordén B (2004) Vesicle size-dependent translocation of penetratin analogs across lipid membranes. Biochim Biophys Acta 1665:142–155

    Article  CAS  PubMed  Google Scholar 

  31. Terrone D, Sang SLW, Roudaia L, Silvius JR (2003) Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential. Biochemistry 42:13787–13799

    Article  CAS  PubMed  Google Scholar 

  32. Drin G, Mazel M, Clair P, Mathieu D, Kaczorek M, Temsamani J (2001) Physico-chemical requirements for cellular uptake of pAntp peptide. Role of lipid-binding affinity. Eur J Biochem 268:1304–1314

    Article  CAS  PubMed  Google Scholar 

  33. Berlose JP, Convert O, Derossi D, Brunissen A, Chassaing G (1996) Conformational and associative behaviours of the third helix of antennapedia homeodomain in membrane-mimetic environments. Eur J Biochem 242:372–386

    Article  CAS  PubMed  Google Scholar 

  34. Lindberg M, Gräslund A (2001) The position of the cell penetrating peptide penetratin in SDS micelles determined by NMR. FEBS Lett 497:39–44

    Article  CAS  PubMed  Google Scholar 

  35. Magzoub M, Kilk K, Eriksson LE, Langel U, Gräslund A (2001) Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles. Biochim Biophys Acta 1512:77–89

    Article  CAS  PubMed  Google Scholar 

  36. Bellet-Amalric E, Blaudez D, Desbat B, Graner F, Gauthier F, Renault A (2000) Interaction of the third helix of Antennapedia homeodomain and a phospholipid monolayer, studied by ellipsometry and PM-IRRAS at the air-water interface. Biochim Biophys Acta 1467:131–143

    Article  CAS  PubMed  Google Scholar 

  37. Zhang W, Smith SO (2005) Mechanism of penetration of Antp(43-58) into membrane bilayers. Biochemistry 44:10110–10118

    Article  CAS  PubMed  Google Scholar 

  38. Lamazière A, Chassaing G, Trugnan G, Ayala-Sanmartin J (2009) Tubular structures in heterogeneous membranes induced by the cell penetrating peptide penetratin. Commun Integr Biol 2:223–224

    Article  PubMed Central  PubMed  Google Scholar 

  39. Palm-Apergi C, Lorents A, Padari K, Pooga M, Hällbrink M (2009) The membrane repair response masks membrane disturbances caused by cell-penetrating peptide uptake. FASEB J 23:214–223

    Article  CAS  PubMed  Google Scholar 

  40. Christiaens B, Grooten J, Reusens M, Joliot A, Goethals M, Vandekerckhove J, Prochiantz A, Rosseneu M (2004) Membrane interaction and cellular internalization of penetratin peptides. Eur J Biochem 271:1187–1197

    Article  CAS  PubMed  Google Scholar 

  41. Esbjörner EK, Lincoln P, Nordén B (2007) Counterion-mediated membrane penetration: cationic cell-penetrating peptides overcome Born energy barrier by ion-pairing with phospholipids. Biochim Biophys Acta 1768:1550–1558

    Article  PubMed  Google Scholar 

  42. Dupont E, Prochiantz A, Joliot A (2007) Identification of a signal peptide for unconventional secretion. J Biol Chem 282:8994–9000

    Article  CAS  PubMed  Google Scholar 

  43. Magzoub M, Eriksson LEG, Gräslund A (2003) Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles. Biophys Chem 103:271–288

    Article  CAS  PubMed  Google Scholar 

  44. Drin G, Déméné H, Temsamani J (2001) Translocation of the pAntp peptide and its amphipathic analogue AP-2AL. Biochemistry 40:1824–1834

    Article  CAS  PubMed  Google Scholar 

  45. Bechara C, Pallerla M, Zaltsman Y, Burlina F, Alves ID, Lequin O, Sagan S (2013) Tryptophan within basic peptide sequences triggers glycosaminoglycan-dependent endocytosis. FASEB J 27:738–749

    Article  CAS  PubMed  Google Scholar 

  46. Jiao CY, Delaroche D, Burlina F, Alves ID, Chassaing G, Sagan S (2009) Translocation and endocytosis for cell-penetrating peptide internalization. J Biol Chem 284:33957–33965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Ghibaudi E, Boscolo B, Inserra G, Laurenti E, Traversa S, Barbero L, Ferrari RP (2005) The interaction of the cell-penetrating peptide penetratin with heparin, heparansulfates and phospholipid vesicles investigated by ESR spectroscopy. J Pept Sci 11:401–409

    Article  CAS  PubMed  Google Scholar 

  48. Madani F, Perálvarez-Marín A, Gräslund A (2011) Liposome model systems to study the endosomal escape of cell-penetrating peptides: transport across phospholipid membranes induced by a proton gradient. J Drug Deliv 2011:897592

    Article  PubMed Central  PubMed  Google Scholar 

  49. Letoha T, Gaal S, Somlai C, Czajlik A, Perczel A, Penke B (2003) Membrane translocation of penetratin and its derivatives in different cell lines. J Mol Recognit 16:272–279

    Article  CAS  PubMed  Google Scholar 

  50. Letoha T, Gaál S, Somlai C, Venkei Z, Glavinas H, Kusz E, Duda E, Czajlik A, Peták F, Penke B (2005) Investigation of penetratin peptides. Part 2. In vitro uptake of penetratin and two of its derivatives. J Pept Sci 11:805–811

    Article  CAS  PubMed  Google Scholar 

  51. Fischer R, Waizenegger T, Köhler K, Brock R (2002) A quantitative validation of fluorophore-labelled cell-permeable peptide conjugates: fluorophore and cargo dependence of import. Biochim Biophys Acta 1564:365–374

    Article  CAS  PubMed  Google Scholar 

  52. Allinquant B, Hantraye P, Mailleux P, Moya K, Bouillot C, Prochiantz A (1995) Downregulation of Amyloid Precursor Protein inhibits neurite outgrowth in Vitro. J Cell Biol 128:919–927

    Article  CAS  PubMed  Google Scholar 

  53. Perez F, Lledo PM, Karagogeos D, Vincent JD, Prochiantz A, Ayala J (1994) Rab3A and Rab3B carboxy-terminal peptides are both potent and specific inhibitors of prolactin release by rat cultured anterior pituitary cells. Mol Endocrinol 8:1278–1287

    CAS  PubMed  Google Scholar 

  54. Schutze-Redelmeier MP, Gournier H, Garcia-Pons F, Moussa M, Joliot A, Volovitch M, Prochiantz A, Lemonnier FA (1996) Introduction of exogenous antigens into the MHC class I processing and presentation pathway by Drosophila antennapedia homeodomain primes cytotoxic T cells in vivo. J Immunol 157:650–655

    CAS  PubMed  Google Scholar 

  55. Théodore L, Derossi D, Chassaing G, Llirbat B, Kubes M, Jordan P, Chneiweiss H, Godement P, Prochiantz A (1995) Intraneuronal delivery of protein kinase C pseudosubstrate leads to growth cone collapse. J Neurosci 15:7158–7167

    PubMed  Google Scholar 

  56. Troy CM, Derossi D, Prochiantz A, Greene LA, Shelanski ML (1996) Downregulation of Cu/Zn superoxide dismutase leads to cell death via the nitric oxide-peroxynitrite pathway. J Neurosci 16:253–261

    CAS  PubMed  Google Scholar 

  57. Dupont E, Prochiantz A, Joliot A (2006) Penetratins. CRC, Boca Raton, FL

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Joliot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dupont, E., Prochiantz, A., Joliot, A. (2015). Penetratin Story: An Overview. In: Langel, Ü. (eds) Cell-Penetrating Peptides. Methods in Molecular Biology, vol 1324. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2806-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2806-4_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2805-7

  • Online ISBN: 978-1-4939-2806-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics