Skip to main content

The Role of Ubiquitination to Determine Non-Smad Signaling Responses

  • Protocol
TGF-β Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1344))

Abstract

Ubiquitination is a posttranslational modification of proteins which acts as a key regulator of their function as well as fate. We have recently reported transforming growth factor β (TGFβ)-induced activation of non-Smad signaling responses through a specific Lys63-linked polyubiquitination of TGFβ type I receptor and TGFβ-associated kinase 1 (TAK1) that are utilized to specify cellular responses in cancer cells. This chapter gives a brief introduction of the biological importance of ubiquitination of proteins, the methods we have used for detecting new partners in the TGFβ signaling pathway and for performing ubiquitination assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458(7237):422–429, PMCID: 2819001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Hershko A, Ciechanover A, Rose IA (1981) Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown. J Biol Chem 256(4):1525–1528

    CAS  PubMed  Google Scholar 

  3. Wertz IE, Dixit VM (2010) Signaling to NF-kappaB: regulation by ubiquitination. Cold Spring Harb Perspect Biol 2(3):a003350, PMCID: 2829959

    Article  PubMed Central  PubMed  Google Scholar 

  4. Landstrom M (2010) The TAK1-TRAF6 signalling pathway. Int J Biochem Cell Biol 42(5):585–589

    Article  PubMed  Google Scholar 

  5. Ciechanover A, Heller H, Elias S, Haas AL, Hershko A (1980) ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc Natl Acad Sci U S A 77(3):1365–1368, PMCID: 348495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA (1980) Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci U S A 77(4):1783–1786, PMCID: 348591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Goldstein G, Scheid M, Hammerling U, Schlesinger DH, Niall HD, Boyse EA (1975) Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci U S A 72(1):11–15, PMCID: 432229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  9. Haglund K, Dikic I (2005) Ubiquitylation and cell signaling. EMBO J 24(19):3353–3359, PMCID: 1276169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Haglund K, Di Fiore PP, Dikic I (2003) Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 28(11):598–603

    Article  CAS  PubMed  Google Scholar 

  11. Emmerich CH, Schmukle AC, Walczak H (2011) The emerging role of linear ubiquitination in cell signaling. Sci Signal 4(204):re5

    Article  PubMed  Google Scholar 

  12. Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8(6):610–616

    Article  CAS  PubMed  Google Scholar 

  13. Heldin CH, Landstrom M, Moustakas A (2009) Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 21(2):166–176

    Article  CAS  PubMed  Google Scholar 

  14. Massague J (2008) TGFbeta in cancer. Cell 134(2):215–230, PMCID: 3512574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Moustakas A, Heldin CH (2005) Non-Smad TGF-beta signals. J Cell Sci 118(Pt 16):3573–3584

    Article  CAS  PubMed  Google Scholar 

  16. Mu Y, Gudey SK, Landstrom M (2012) Non-Smad signaling pathways. Cell Tissue Res 347(1):11–20

    Article  CAS  PubMed  Google Scholar 

  17. Roberts AB (1999) TGF-beta signaling from receptors to the nucleus. Microbes Infect 1(15):1265–1273

    Article  CAS  PubMed  Google Scholar 

  18. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584

    Article  CAS  PubMed  Google Scholar 

  19. Wakefield LM, Roberts AB (2002) TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12(1):22–29

    Article  CAS  PubMed  Google Scholar 

  20. Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N et al (2008) The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 10(10):1199–1207

    Article  CAS  PubMed  Google Scholar 

  21. Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 31(6):918–924, PMCID: 2621323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T et al (2001) Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276(16):12477–12480

    Article  CAS  PubMed  Google Scholar 

  23. Koinuma D, Shinozaki M, Komuro A, Goto K, Saitoh M, Hanyu A et al (2003) Arkadia amplifies TGF-beta superfamily signalling through degradation of Smad7. EMBO J 22(24):6458–6470, PMCID: 291827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Hu D, Wan Y (2011) Regulation of Kruppel-like factor 4 by the anaphase promoting complex pathway is involved in TGF-beta signaling. J Biol Chem 286(9):6890–6901, PMCID: 3044944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. De Boeck M, ten Dijke P (2012) Key role for ubiquitin protein modification in TGFbeta signal transduction. Ups J Med Sci 117(2):153–165, PMCID: 3339547

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307(5715):1603–1609

    Article  CAS  PubMed  Google Scholar 

  27. Mu Y, Sundar R, Thakur N, Ekman M, Gudey SK, Yakymovych M et al (2011) TRAF6 ubiquitinates TGFbeta type I receptor to promote its cleavage and nuclear translocation in cancer. Nat Commun 2:330, PMCID: 3113296

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Susanne Grimsby, Alessandro Sorrentino, Reshma Sundar, and Noopur Thakur for their contributions to the original research. We thank Carl-Henrik Heldin and our colleges at the Ludwig Institute for Cancer Research, Uppsala Branch, for valuable discussions. This work was supported by the Swedish Medical Research Council, the Swedish Cancer Society, the Torsten and Ragnar Söderbergs Foundation, Umeå University, Cancer Research Foundation Norrland and a regional agreement between Umeå University and Västerbotten County Council on cooperation in the field of Medicine, Odontology and Health (ALF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marene Landström Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gudey, S.K., Landström, M. (2016). The Role of Ubiquitination to Determine Non-Smad Signaling Responses. In: Feng, XH., Xu, P., Lin, X. (eds) TGF-β Signaling. Methods in Molecular Biology, vol 1344. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2966-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2966-5_23

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2965-8

  • Online ISBN: 978-1-4939-2966-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics