Skip to main content

Generation of TCR-Like Antibodies Using Phage Display

  • Protocol
Peptide Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1348))

Abstract

The adaptive immune response against cancer consists of two arms: the humoral response from B cells, and the cell-mediated response from T cells. The humoral response has the advantage of diversity, theoretically recognizing antigens of any type (sugar, protein, lipid, etc.), but is generally limited to surface-expressed targets. T cells on the other hand, can recognize intracellular targets, but only if they are proteins, and presented as small peptide fragments on major histocompatibility complex (MHC) cell surface antigens. However, with advances in protein engineering and phage display, it has become feasible to quickly identify and generate antibodies or single-chain variable fragments against peptide-MHC, thus bridging the two arms, and allowing for recognition, identification, and effector responses against cells expressing intracellular targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith GP (1985) Filamentous fusion phage - novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317. doi:10.1126/Science.4001944

    Article  CAS  PubMed  Google Scholar 

  2. Choo Y, Klug A (1994) Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc Natl Acad Sci U S A 91(23):11163–11167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Cwirla SE, Peters EA, Barrett RW, Dower WJ (1990) Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci U S A 87(16):6378–6382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Devlin JJ, Panganiban LC, Devlin PE (1990) Random peptide libraries: a source of specific protein binding molecules. Science 249(4967):404–406

    Article  CAS  PubMed  Google Scholar 

  5. Jamieson AC, Kim SH, Wells JA (1994) In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry 33(19):5689–5695

    Article  CAS  PubMed  Google Scholar 

  6. Lowman HB, Bass SH, Simpson N, Wells JA (1991) Selecting high-affinity binding proteins by monovalent phage display. Biochemistry 30(45):10832–10838

    Article  CAS  PubMed  Google Scholar 

  7. Rebar EJ, Pabo CO (1994) Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263(5147):671–673

    Article  CAS  PubMed  Google Scholar 

  8. Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249(4967):386–390

    Article  CAS  PubMed  Google Scholar 

  9. Wang CI, Yang Q, Craik CS (1995) Isolation of a high affinity inhibitor of urokinase-type plasminogen activator by phage display of ecotin. J Biol Chem 270(20):12250–12256

    Article  CAS  PubMed  Google Scholar 

  10. Barbas CF 3rd (1995) Synthetic human antibodies. Nat Med 1(8):837–839

    Article  CAS  PubMed  Google Scholar 

  11. Chames P, Hufton SE, Coulie PG, Uchanska-Ziegler B, Hoogenboom HR (2000) Direct selection of a human antibody fragment directed against the tumor T-cell epitope HLA-A1-MAGE-A1 from a nonimmunized phage-Fab library. Proc Natl Acad Sci U S A 97(14):7969–7974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Dao T, Yan S, Veomett N, Pankov D, Zhou L, Korontsvit T, Scott A, Whitten J, Maslak P, Casey E, Tan T, Liu H, Zakhaleva V, Curcio M, Doubrovina E, O’Reilly RJ, Liu C, Scheinberg DA (2013) Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med 5(176):176ra133. doi:10.1126/scitranslmed.3005661

    Google Scholar 

  13. Mao S, Gao C, Lo CH, Wirsching P, Wong CH, Janda KD (1999) Phage-display library selection of high-affinity human single-chain antibodies to tumor-associated carbohydrate antigens sialyl Lewisx and Lewisx. Proc Natl Acad Sci U S A 96(12):6953–6958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9(10):767–774. doi:10.1038/nrd3229

    Article  CAS  PubMed  Google Scholar 

  15. Rauchenberger R, Borges E, Thomassen-Wolf E, Rom E, Adar R, Yaniv Y, Malka M, Chumakov I, Kotzer S, Resnitzky D, Knappik A, Reiffert S, Prassler J, Jury K, Waldherr D, Bauer S, Kretzschmar T, Yayon A, Rothe C (2003) Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3. J Biol Chem 278(40):38194–38205. doi:10.1074/jbc.M303164200

    Article  CAS  PubMed  Google Scholar 

  16. Saggy I, Wine Y, Shefet-Carasso L, Nahary L, Georgiou G, Benhar I (2012) Antibody isolation from immunized animals: comparison of phage display and antibody discovery via V gene repertoire mining. Protein Eng Des Sel 25(10):539–549. doi:10.1093/protein/gzs060

    Article  CAS  PubMed  Google Scholar 

  17. Schoonbroodt S, Steukers M, Viswanathan M, Frans N, Timmermans M, Wehnert A, Nguyen M, Ladner RC, Hoet RM (2008) Engineering antibody heavy chain CDR3 to create a phage display Fab library rich in antibodies that bind charged carbohydrates. J Immunol 181(9):6213–6221

    Article  CAS  PubMed  Google Scholar 

  18. Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, McCafferty J, Hodits RA, Wilton J, Johnson KS (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14(3):309–314. doi:10.1038/nbt0396-309

    Article  CAS  PubMed  Google Scholar 

  19. Barbas CF 3rd, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88(18):7978–7982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. doi:10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian H. Santich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Santich, B.H., Liu, H., Liu, C., Cheung, NK.V. (2015). Generation of TCR-Like Antibodies Using Phage Display. In: Houen, G. (eds) Peptide Antibodies. Methods in Molecular Biology, vol 1348. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2999-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2999-3_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2998-6

  • Online ISBN: 978-1-4939-2999-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics