Skip to main content

Fmoc Solid-Phase Peptide Synthesis

  • Protocol
Peptide Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1348))

Abstract

Synthetic peptides are important as drugs and in research. Currently, the method of choice for producing these compounds is solid-phase peptide synthesis. In this nonspecialist review, we describe the scope and limitations of Fmoc solid-phase peptide synthesis. Furthermore, we provide a detailed protocol for Fmoc peptide synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discovery Today 20:122–128

    Article  CAS  PubMed  Google Scholar 

  2. Craik DJ, Fairlie DP, Liras S et al (2013) The future of peptide-based drugs. Chem Biol Drug Des 81:136–147

    Article  CAS  PubMed  Google Scholar 

  3. Okarvi SM (2008) Peptide-based radiopharmaceuticals and cytotoxic conjugates: Potential tools against cancer. Cancer Treat Rev 34:13–26

    Article  CAS  PubMed  Google Scholar 

  4. Mercer DK, O’Neil DA (2013) Peptides as the next generation of anti-infectives. Future Med Chem 5:315–337

    Article  CAS  PubMed  Google Scholar 

  5. Gori A, Longhi R, Peri C et al (2013) Peptides for immunological purposes: design, strategies and applications. Amino Acids 45:257–268

    Article  CAS  PubMed  Google Scholar 

  6. Trier NH, Hansen PR, Houen G (2012) Production and characterization of peptide antibodies. Methods 56:136–144

    Article  CAS  PubMed  Google Scholar 

  7. Robinson JA (2013) Max Bergmann lecture Protein epitope mimetics in the age of structural vaccinology. J Pept Sci 19:127–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Johnson IS (1983) Human insulin from recombinant DNA technology. Science 213:632–637

    Article  Google Scholar 

  9. Merrifield RB (1963) Solid phase peptide synthesis.I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  10. Pedersen SW, Armishaw CJ, Strømgaard K (2013) Synthesis of peptides using tert -butyloxycarbonyl(Boc) as the α-amino protection group. In: Jensen KJ, Shelton PT, Pedersen SL (eds) Peptide synthesis and applications. Humana Press, New York, pp 65–80

    Chapter  Google Scholar 

  11. Atherthon E, Fox H, Harkiss D, et al. (1978) A Mild procedure for Solid Phase Peptide Synthesis: Use of Fluorenylmethyloxycarbonylamino-Acids. J Chem Soc Chem Commun 537–539

    Google Scholar 

  12. Jensen KJ, Shelton PT, Pedersen SL (2013) Peptide synthesis and applications. Humana Press, New York

    Book  Google Scholar 

  13. Fields GB, Lauer-Fields JL, Liu R-Q et al (2002) Principle and practice of solid-phase peptide synthesis. In: Grant G (ed) Synthetic peptides: a user´s guide. Oxford University Press, Oxford, pp 93–219

    Google Scholar 

  14. Fields GB (1997) Solid-phase peptide synthesis. Methods Enzymol 289

    Google Scholar 

  15. Rapp W, Zhang L, Habich R et al (1989) Polystyrene-polyoxyethylene graft copolymers for high speed peptide synthesis. In: Bayer E, Jung G (eds) Peptides 1988: proceedings of the 20th european peptide symposium. De Gruyter, Walter, Inc, Berlin, pp 199–201

    Google Scholar 

  16. García-Martín F, Quintanar-Audelo M, García-Ramos Y et al (2006) ChemMatrix, a poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J Comb Chem 8:213–220

    Article  PubMed  Google Scholar 

  17. Meldal M (1992) PEGA: a flow stable polyethylene glycol dimethyl acrylamide copolymer for solid phase synthesis. Tetrahedron Lett 33:3077–3080

    Article  CAS  Google Scholar 

  18. Meldal M, Auzanneau F-I, Hindsgaul O, et al. (1994) A PEGA Resin for use in the Solid-phase Chemical-Enzymatic Synthesis of Glycopeptides. J Chem Soc Chem Commun 1849–1850

    Google Scholar 

  19. Songster MF, Barany G (1997) Handles for solid-phase peptide synthesis. Methods Enzymol 289:126–174

    Article  CAS  PubMed  Google Scholar 

  20. Góngora-Benítez M, Tulla-Puche J, Albericio F (2013) Handles for fmoc solid-phase synthesis of protected peptides. ACS Comb Sci 15:217–228

    Article  PubMed  Google Scholar 

  21. Wang SS (1973) p-alkoxybenzyl alcohol resin and p-alkoxybenzyloxycarbonylhydrazide resin for solid phase synthesis of protected peptide fragments. J Am Chem Soc 95:1329–1333

    Article  Google Scholar 

  22. Rink H (1987) Solid-Phase synthesis of protected peptide fragments using a tri-alkoxy-diphenyl-methylester resin. Tetrahedron Lett 28:3787–3790

    Article  CAS  Google Scholar 

  23. Barlos K, Chatzi O, Gatos D et al (1991) 2-chlorotrityl chloride resin. Int J Pept Protein Res 37:513–520

    CAS  PubMed  Google Scholar 

  24. Han Y, Bontems S, Hegyes P et al (1996) Preparation and applications of xanthenylamide (XAL) handles for solid-phase synthesis of C-terminal peptide amides under particularly mild conditions. J Org Chem 61:6326–6339

    Article  CAS  PubMed  Google Scholar 

  25. Atherthon E, Sheppard RC (1989) Solid phase peptide synthesis. A practical approach. Oxford University Press, Oxford

    Google Scholar 

  26. Mullen DG, Barany G (1988) A New fluoridolyzable anchoring linkage for orthogonal solid-phase peptide synthesis: design, preparation, and application of the (N-3 or 4)-((4-(hydroxymethyl) phenoxy)-tert-butylphenylsilyl)phenyl pentanedioic acid monamide Pbs handle. J Org Chem 53:5240–5248

    Article  CAS  Google Scholar 

  27. Chhabra SR, Parekh H, Khan AN et al (2001) A Dde-based carboxy linker for solid-phase synthesis. Tetrahedron Lett 42:2189–2192

    Article  CAS  Google Scholar 

  28. Chumachenko N, Novikov Y, Shoemaker RK et al (2011) A dimethyl ketal-protected benzoin-based linker suitable for photolytic release of unprotected peptides. J Org Chem 76:9409–9416

    Article  CAS  PubMed  Google Scholar 

  29. Jensen KJ, Alsina J, Songster MF et al (1998) Backbone amide linker (BAL) strategy for solid-phase synthesis of C-terminal-modified and cyclic peptides. J Am Chem Soc 123:5441–5452

    Article  Google Scholar 

  30. El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111:6557–6602

    Article  CAS  PubMed  Google Scholar 

  31. Subiros-Funosas R, Prohens R, Barbas R et al (2009) Oxyma: an efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chemistry 15:9394–9403

    Article  CAS  PubMed  Google Scholar 

  32. Coste J, LeNguyen D, Castro B (1990) PyBoP®: a New peptide coupling reagent devoid of toxic by-product. Tetrahedron Lett 31:205–208

    Article  CAS  Google Scholar 

  33. Knorr R, Trzcieak A, Bannwarth W et al (1989) New coupling reagents in peptide chemistry. Tetrahedron Lett 30:1927–1930

    Article  CAS  Google Scholar 

  34. Carpino LA (1993) 1-hydroxy-7-azabenzotriazole. An efficient peptide additive. J Am Chem Soc 115:4397–4398

    Article  CAS  Google Scholar 

  35. Callahan FM, Anderson GW, Paul R et al (1963) The tertiary butyl group as a blocking agent for hydroxyl, sulfhydryl and amido functions in peptide synthesis. J Am Chem Soc 85:201–207

    Article  CAS  Google Scholar 

  36. Sieber P, Riniker B (1991) Protection of carboxamide functions by the trityl residue. Application to peptide synthesis. Tetrahedron Lett 32:739–742

    Article  CAS  Google Scholar 

  37. Carpino LA, Shroff H, Triolo SA et al (1993) The 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl group (Pbf) as arginine side chain protectant. Tetrahedron Lett 34:7829–7832

    Article  CAS  Google Scholar 

  38. McKay FC, Albertson NF (1957) New amine-masking groups for peptide synthesis. J Am Chem Soc 79:4686–4690

    Article  CAS  Google Scholar 

  39. King DS, Fields CG, Fields GB (1990) A cleavage method which minimizes side reactions following fmoc solid phase peptide synthesis. Int J Pept Protein Res 36:254–266

    Google Scholar 

  40. Nielsen SL, Frimodt-Moller N, Kragelund BB et al (2007) Structure activity study of the antibacterial peptide fallaxin. Protein Sci 16:1969–1976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Albericio F, Kneib-Cordonier N, Biancalana S et al (1990) Preparation and application of the PAL handle for the solid-phase peptide synthesis of C-terminal peptide amides under mild conditions. J Org Chem 55:3730–3743

    Article  CAS  Google Scholar 

  42. Solé NA, Barany G (1992) Optimization of solid-phase peptide synthesis of [Ala8]-dynorphin. J Org Chem 57:5399–5403

    Article  Google Scholar 

  43. Napolitano A, Rodriquez M, Bruno I et al (2003) Synthesis, structural aspects and cytotoxicity of the natural cyclopeptides yunnanins A, C and phakellistatins 1, 10. Tetrahedron 59:10203–10211

    Article  CAS  Google Scholar 

  44. Davies J (2003) The cyclization of peptides and depsipeptides. J Pept Sci 9:471–501

    Article  CAS  PubMed  Google Scholar 

  45. Houston ME Jr, Gannon CL, Kay CM et al (1995) Lactam bridge stabilisation of α-helical peptides: ring size. Orientation and positional effects. J Pept Sci 1:274–282

    Article  CAS  PubMed  Google Scholar 

  46. Natarajan S, Festin SM, Hedberg A et al (1992) Site-specific biotinylation. A novel approach and its application to Endothelin-1 analogs and PTH-analogs. Int. J. Pept Protein Res 40:567–574

    Article  CAS  Google Scholar 

  47. Chicharro C, Granata C, Lozano R et al (2001) N-terminal fatty acid substitution increases the leishmanicidal activity of CA(1-7)M(2-9), a cecropin-melittin hybrid peptide. Antimicrob Agents Chemother 45:2441–2449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Fernandez-Carneado J, Giralt E (2004) An efficient method for the solid-phase synthesis of fluorescently labelled peptides. Tetrahedron Lett 45:6079–6081

    Article  CAS  Google Scholar 

  49. Jensen KJ, Hansen PR, Venugopal D et al (1996) Synthesis of 2-acetamido-2-deoxy-D-glucopyranose O-glycopeptides from N-dithiasuccinoyl-protected derivatives. J Am Chem Soc 118:3148–3155

    Article  CAS  Google Scholar 

  50. Valerio RM, Bray AM, Maeji NJ et al (1995) Preparation of O-phosphotyrosine-containing peptide by fmoc solid-phase synthesis: evaluation of several fmoc-Tyr(PO3R2)-OH derivatives. Lett Pept Sci 2:33–40

    Article  CAS  Google Scholar 

  51. Musiol H-J, Escherich A, Moroder L (2002) Synthesis of sulfated peptides. Synthesis of Peptides and Peptidomimetics E 22b:425–453

    Google Scholar 

  52. Trier NH, Leth ML, Hansen PR et al (2012) Cross-reactivity of a human IgG1 anticitrullinated fibrinogen monoclonal antibody to a citrullinated profilaggrin peptide. Protein Sci 21:1929–1941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Strynadka NC, Redmond MJ, Parker R et al (1998) Use of synthetic peptides to Map the antigenic determinants of glycoprotein D of herpes simplex virus. J Virol 62:3474–3483

    Google Scholar 

  54. Chatterjee J, Gilon C, Hoffman A et al (2008) N-methylation of peptides: a new perspective in medicinal chemistry. Acc Chem Res 41:1331–1342

    Article  CAS  PubMed  Google Scholar 

  55. Miller SM, Simon RJ, Ng S et al (1994) Proteolytic studies of homologous peptide and N-substituted glycine. Bioorg Med Chem Lett 4:2657–2662

    Article  CAS  Google Scholar 

  56. Jahnsen RD, Sandberg-Schaal A, Vissing KJ et al (2014) Tailoring cytotoxicity of antimicrobial peptidomimetics with high activity against multidrug-resistant escherichia coli. J Med Chem 57:2864–2873

    Article  CAS  PubMed  Google Scholar 

  57. Schneider T, Kruse T, Wimmer R et al (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science 328:1168–1172

    Article  CAS  PubMed  Google Scholar 

  58. Tam JP, Zavala F (1989) Multiple antigenic peptide. A novel approach to increase detection sensitivity of synthetic peptides in solid-phase immunoassays. J Immunol Methods 124:53–61

    Article  CAS  PubMed  Google Scholar 

  59. Andreu D, Albericio F, Solé NA et al (1994) Formation of disulfide bonds in synthetic peptides and proteins. Methods Mol Biol 35:91–169

    CAS  PubMed  Google Scholar 

  60. Chhabra SRBH, Evans DJ, White PD et al (1998) An appraisal of new variants of Dde amine protecting group for solid phase peptide synthesis. Tetrahedron Lett 39:1603–1606

    Article  CAS  Google Scholar 

  61. Li D, Elbert DL (2002) The kinetics of the removal of the N-methyltrityl (Mtt) group during the synthesis of branched peptides. J Pept Res 60:300–303

    Article  CAS  PubMed  Google Scholar 

  62. Loffet A, Zhang HXM (1993) Allyl-based groups for side-chain protection of amino-acids. Int J Pept Protein Res 42:346–351

    Article  CAS  PubMed  Google Scholar 

  63. Rusiecki VK, Warne SA (1993) Synthesis of Nα-Fmoc-Nε-Nvoc-Lysine and Use in the preparation of Selectively Functionalized Peptides. Bioorg Med Chem Lett 3:707–710

    Article  CAS  Google Scholar 

  64. Salvati M, Cordero FM, Pisaneschi F, et al. (2006) New cyclic Arg-Gly-Asp pseudopentapeptide containing the β-turn mimetic GPTM. Synlett, 13:2067–2070

    Google Scholar 

  65. Berthelot T, Goncalves M, Laın G et al (2006) New strategy towards the efficient solid phase synthesis of cyclopeptides. Tetrahedron Lett 62:1124–1130

    Article  CAS  Google Scholar 

  66. Albericio F, Van Abel R, Barany G (1990) Solid-phase synthesis of peptides with C-terminal asparagine or glutamine. Int J Pept Protein Res 35:284–286

    Article  CAS  PubMed  Google Scholar 

  67. Barany G, Han Y, Hargittai B et al (2003) Side-chain anchoring strategy for solid-phase synthesis of peptide acids with C-terminal cysteine. Biopolymers 71:652–666

    Article  CAS  PubMed  Google Scholar 

  68. Han Y, Albericio F, Barany G (1997) Occurrence and minimization of Cysteine racemization during step-wise solid-phase synthesis. J Org Chem 62:4307–4312

    Article  CAS  PubMed  Google Scholar 

  69. Veber DF, Milkowski JD, Varga SL et al (1972) Acetamidomethyl. A Novel Protection Group for Cystein. J Am Chem Soc 94:5456–5461

    Article  CAS  PubMed  Google Scholar 

  70. Goulas S, Gatos D, Barlos K (2006) Convergent solid-phase synthesis of hirudin. J Pept Sci 12:116–123

    Article  CAS  PubMed  Google Scholar 

  71. Fujii N, Otaka A, Funakoshi S et al (1987) Studies on peptides. CLI. Syntheses of cysteine-peptides by oxidation of S-protected cysteine-peptides with thallium(III) trifluoroacetate. Chem Pharm Bull 35:2339–2347

    Article  CAS  PubMed  Google Scholar 

  72. Munson M, Barany G (1993) Synthesis of a-Conotoxin-SI, a bicyclic tridecapeptide amide with Two disulfide bridges: illustration of novel protection schemes and oxidation strategies. J Am Chem Soc 115:10203–10210

    Article  CAS  Google Scholar 

  73. Pedersen SL, Tofteng AP, Malik L et al (2012) Microwave heating in solid-phase peptide synthesis (2012). Chem Soc Rev 41:1826–1844

    Article  CAS  PubMed  Google Scholar 

  74. Wade JD, Bedford J, Sheppard RC et al (1991) DBU as an N-a deprotection reagent for the fluorenyl methoxycarbonyl group in continuous flow SPPS. Pept Res 4:194–199

    CAS  PubMed  Google Scholar 

  75. Lloyd-Williams P, Albericio F, Giralt E (1993) Convergent solid-phase peptide synthesis. Tetrahedron 48:11065–11133

    Article  Google Scholar 

  76. Dawson PE, Muir TW, Clark-Lewis I et al (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  CAS  PubMed  Google Scholar 

  77. Schneider S, Bray B, Mader C et al (2005) Development of HIV fusion inhibitors. J Pept Sci 11:744–753

    Article  CAS  PubMed  Google Scholar 

  78. Kent SBH (2009) Total chemical synthesis of proteins. Chem Soc Rev 38:338–351

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hansen, P.R., Oddo, A. (2015). Fmoc Solid-Phase Peptide Synthesis. In: Houen, G. (eds) Peptide Antibodies. Methods in Molecular Biology, vol 1348. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2999-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2999-3_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2998-6

  • Online ISBN: 978-1-4939-2999-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics