Skip to main content

Using RNA-seq for Analysis of Differential Gene Expression in Fungal Species

  • Protocol
Yeast Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1361))

Abstract

The ability to extract, identify and annotate large amounts of biological data is a key feature of the “omics” era, and has led to an explosion in the amount of data available. One pivotal advance is the use of Next-Generation Sequencing (NGS) techniques such as RNA-sequencing (RNA-seq). RNA-seq uses data from millions of small mRNA transcripts or “reads” which are aligned to a reference genome. Comparative transcriptomics analyses using RNA-seq can provide the researcher with a comprehensive view of the cells’ response to a given environment or stimulus.

Here, we describe the NGS techniques (based on Illumina technology) that are routinely used for comparative transcriptome analysis of fungal species. We describe the entire process from isolation of RNA to computational identification of differentially expressed genes. We provide instructions to allow the beginner to implement packages in R such as Bioconductor. The methods described are not limited to yeast, and can also be applied to other eukaryotic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagalakshmi U, Wang Z, Waern K et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Wilhelm BT, Landry JR (2009) RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48:249–257

    Article  CAS  PubMed  Google Scholar 

  4. Bruno VM, Wang Z, Marjani SL et al (2010) Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq. Genome Res 20:1451–1458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Zupancic ML, Frieman M, Smith D et al (2008) Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol Microbiol 68:547–559

    Article  CAS  PubMed  Google Scholar 

  6. Nobile CJ, Fox EP, Nett JE et al (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kumamoto CA, Vinces MD (2005) Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol 7:1546–1554

    Article  CAS  PubMed  Google Scholar 

  8. Marioni JC, Mason CE, Mane SM et al (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. R Code Team (2014) R: a language and environment for statistical computing. http://www.r-project.org

  10. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed Central  PubMed  Google Scholar 

  11. CRAN (2014) The Comprehensive R Archive Network (CRAN). http://cran.r-project.org

  12. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol 550

    Google Scholar 

  13. Soto T, Núñez A, Madrid M et al (2007) Transduction of centrifugation-induced gravity forces through mitogen-activated protein kinase pathways in the fission yeast Schizosaccharomyces pombe. Microbiology 153:1519–1529

    Article  CAS  PubMed  Google Scholar 

  14. Desjardins PR, Conklin DS (2011) Microvolume quantitation of nucleic acids. Curr Protoc Mol Biol Appendix:A.3J.1–A.3J.16

    Google Scholar 

  15. Zhang Z, Theurkauf WE, Weng Z et al (2012) Strand-specific libraries for high throughput RNA sequencing (RNA-Seq) prepared without poly(A) selection. Silence 3:9

    Article  PubMed Central  PubMed  Google Scholar 

  16. Levin JZ, Yassour M, Adiconis X et al (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 7:709–715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Parkhomchuk D, Borodina T, Amstislavskiy V et al (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37, e123

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sultan M, Dokel S, Amstislavskiy V et al (2012) A simple strand-specific RNA-Seq library preparation protocol combining the Illumina TruSeq RNA and the dUTP methods. Biochem Biophys Res Commun 422:643–646

    Article  CAS  PubMed  Google Scholar 

  19. Craig DW, Pearson JV, Szelinger S et al (2008) Identification of genetic variants using bar-coded multiplexed sequencing. Nat Methods 5:887–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Weissenmayer BA, Prendergast JG, Lohan AJ et al (2011) Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs. PLoS One 6, e17570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Illumina (2014) Illumina customer sequence letter. http://support.illumina.com/downloads/illumina-customer-sequence-letter.html

  22. Holland LM, Schröder MS, Turner SA et al (2014) Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans. PLoS Pathog 10, e1004365

    Article  PubMed Central  PubMed  Google Scholar 

  23. Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 41:D991–D995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kodama Y, Shumway M, Leinonen R et al (2012) The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res 40:D54–D56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. The SAM/BAM Format Specification Working Group (2014) Sequence alignment/map format specification. https://github.com/samtools/hts-specs

  27. Blankenberg D, Gordon A, Von Kuster G et al (2010) Manipulation of FASTQ data with Galaxy. Bioinformatics 26:1783–1785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hannon G (2014) FASTX-Toolkit: FASTQ/A short-reads pre-processing tools. http://hannonlab.cshl.edu/fastx_toolkit

  29. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  30. Jiang H, Lei R, Ding SW et al (2014) Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 15:182

    Article  PubMed Central  PubMed  Google Scholar 

  31. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Butler G, Rasmussen MD, Lin MF et al (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Fitzpatrick DA, Butler G (2010) Comparative genomic analysis of pathogenic yeasts and the evolution of virulence. In: Ashbee HR, Bignell E (eds) Pathogenic yeasts. Springer, Heidelberg, pp 1–18

    Chapter  Google Scholar 

  34. Guida A, Lindstadt C, Maguire SL et al (2011) Using RNA-seq to determine the transcriptional landscape and the hypoxic response of the pathogenic yeast Candida parapsilosis. BMC Genomics 12:628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Maguire SL, Oheigeartaigh SS, Byrne KP et al (2013) Comparative genome analysis and gene finding in Candida species using CGOB. Mol Biol Evol 30:1281–1291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed Central  PubMed  Google Scholar 

  38. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Huntley MA, Larson JL, Chaivorapol C et al (2013) ReportingTools: an automated result processing and presentation toolkit for high-throughput genomic analyses. Bioinformatics 29:3220–3221

    Article  CAS  PubMed  Google Scholar 

  40. Inglis DO, Arnaud MB, Binkley J et al (2012) The Candida Genome Database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata. Nucleic Acids Res 40:D667–D674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Costanzo MC, Engel SR, Wong ED et al (2014) Saccharomyces genome database provides new regulation data. Nucleic Acids Res 42:D717–D725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Cerqueira GC, Arnaud MB, Inglis DO et al (2014) The Aspergillus genome database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res 42:D705–D710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Fitzpatrick DA, O'Gaora P, Byrne KP et al (2010) Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser. BMC Genomics 11:290

    Article  PubMed Central  PubMed  Google Scholar 

  44. Byrne KP, Wolfe KH (2005) The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res 15:1456–1461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ford E, Nikopoulou C, Kokkalis A et al (2014) A method for generating highly multiplexed ChIP-seq libraries. BMC Res Notes 7:312

    Article  PubMed Central  PubMed  Google Scholar 

  46. Stonebank M (2001) UNIX tutorial for beginners. http://www.ee.surrey.ac.uk/Teaching/Unix

  47. Li JW, Schmieder R, Ward RM et al (2012) SEQanswers: an open access community for collaboratively decoding genomes. Bioinformatics 28:1272–1273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Parnell LD, Lindenbaum P, Shameer K et al (2011) BioStar: an online question & answer resource for the bioinformatics community. PLoS Comput Biol 7, e1002216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Overflow S (2014) Question and answer site for professional and enthusiast programmers. http://www.stackoverflow.com

  50. SRA SS (2011) Using the SRA Toolkit to convert .sra files into other formats. http://www.ncbi.nlm.nih.gov/books/NBK158900/. 2014

  51. Stack Overflow (2009, updated in 2014) Download guide. National Center for Biotechnology Information (US). http://www.ncbi.nlm.nih.gov/books/NBK47540/

  52. GFF: an exchange format for feature description (1999) Sanger Institute. https://www.sanger.ac.uk/resources/software/gff/. 2014

  53. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  54. Krueger F (2014) Trim Galore! a wrapper tool around Cutadapt and FastQC http://www.bioinformatics.babraham.ac.uk/projects/trim_galore

  55. Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26:873–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Engstrom PG, Steijger T, Sipos B et al (2013) Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods 10:1185–1191

    Article  PubMed Central  PubMed  Google Scholar 

  58. Rutherford K, Parkhill J, Crook J et al (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    Article  CAS  PubMed  Google Scholar 

  59. Skinner ME, Uzilov AV, Stein LD et al (2009) JBrowse: a next-generation genome browser. Genome Res 19:1630–1638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Kvam VM, Liu P, Si Y (2012) A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot 99:248–256

    Article  PubMed  Google Scholar 

  62. Soneson C, Delorenzi M (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 14:91

    Article  PubMed Central  PubMed  Google Scholar 

  63. RStudio (2014) RStudio: Integrated development environment for R (Version 0.98.1062). http://www.rstudio.org/

  64. Saito R, Smoot ME, Ono K et al (2012) A travel guide to cytoscape plugins. Nat Methods 9:1069–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Foundation PS (2014) Python language reference, version 2.7. http://www.python.org

Download references

Acknowledgements

We are grateful to Dr Amanada Lohan, UCD, for helpful advice and for designing the original sequencing strategy. Work in the Butler lab is supported by Science Foundation Ireland and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldine Butler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, C., Schröder, M.S., Hammel, S., Butler, G. (2016). Using RNA-seq for Analysis of Differential Gene Expression in Fungal Species. In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 1361. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3079-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3079-1_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3078-4

  • Online ISBN: 978-1-4939-3079-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics