Skip to main content

PTEN at 18: Still Growing

  • Protocol
  • First Online:
PTEN

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1388))

Abstract

Discovered in 1997, PTEN remains one of the most studied tumor suppressors. In this issue of Methods in Molecular Biology, we assembled a series of papers describing various clinical and experimental approaches to studying PTEN function. Due to its broad expression, regulated subcellular localization, and intriguing phosphatase activity, methodologies aimed at PTEN study have often been developed in the context of mutations affecting various aspects of its regulation, found in patients burdened with PTEN loss-driven tumors. PTEN’s extensive posttranslational modifications and dynamic localization pose unique challenges for studying PTEN features in isolation and necessitate considerable development of experimental systems to enable controlled characterization. Nevertheless, ongoing efforts towards the development of PTEN knockout and knock-in animals and cell lines, antibodies, and enzymatic assays have facilitated a huge body of work, which continues to unravel the fascinating biology of PTEN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li J et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947

    Article  CAS  PubMed  Google Scholar 

  2. Steck PA et al (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15(4):356–362

    Article  CAS  PubMed  Google Scholar 

  3. Bostrom J et al (1998) Mutation of the PTEN (MMAC1) tumor suppressor gene in a subset of glioblastomas but not in meningiomas with loss of chromosome arm 10q. Cancer Res 58(1):29–33

    CAS  PubMed  Google Scholar 

  4. Liu W et al (1997) PTEN/MMAC1 mutations and EGFR amplification in glioblastomas. Cancer Res 57(23):5254–5257

    CAS  PubMed  Google Scholar 

  5. Rasheed BK et al (1997) PTEN gene mutations are seen in high-grade but not in low-grade gliomas. Cancer Res 57(19):4187–4190

    CAS  PubMed  Google Scholar 

  6. Dahia PL et al (1997) Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res 57(21):4710–4713

    CAS  PubMed  Google Scholar 

  7. Teng DH et al (1997) MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res 57(23):5221–5225

    CAS  PubMed  Google Scholar 

  8. Guldberg P et al (1997) Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res 57(17):3660–3663

    CAS  PubMed  Google Scholar 

  9. Saal LH et al (2008) Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat Genet 40(1):102–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liaw D et al (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16(1):64–67

    Article  CAS  PubMed  Google Scholar 

  11. Marsh DJ et al (1998) Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum Mol Genet 7(3):507–515

    Article  CAS  PubMed  Google Scholar 

  12. Eng C (1998) Genetics of Cowden syndrome: through the looking glass of oncology. Int J Oncol 12(3):701–710

    CAS  PubMed  Google Scholar 

  13. Gupta A, Dey CS (2012) PTEN, a widely known negative regulator of insulin/PI3K signaling, positively regulates neuronal insulin resistance. Mol Biol Cell 23(19):3882–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haas-Kogan D, Stokoe D (2008) PTEN in brain tumors. Expert Rev Neurother 8(4):599–610

    Article  CAS  PubMed  Google Scholar 

  15. Domanskyi A et al (2011) Pten ablation in adult dopaminergic neurons is neuroprotective in Parkinson’s disease models. FASEB J 25(9):2898–2910

    Article  CAS  PubMed  Google Scholar 

  16. Spinelli L et al (2015) Functionally distinct groups of inherited PTEN mutations in autism and tumour syndromes. J Med Genet 52(2):128–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Redfern RE et al (2010) A mutant form of PTEN linked to autism. Protein Sci 19(10):1948–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alonso A et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711

    Article  CAS  PubMed  Google Scholar 

  19. Myers MP et al (1997) P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci U S A 94(17):9052–9057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273(22):13375–13378

    Article  CAS  PubMed  Google Scholar 

  21. Myers MP et al (1998) The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci U S A 95(23):13513–13518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davidson L et al (2010) Suppression of cellular proliferation and invasion by the concerted lipid and protein phosphatase activities of PTEN. Oncogene 29(5):687–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stambolic V et al (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95(1):29–39

    Article  CAS  PubMed  Google Scholar 

  24. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501

    Article  CAS  PubMed  Google Scholar 

  26. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606–619

    Article  CAS  PubMed  Google Scholar 

  27. Li DM, Sun H (1997) TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res 57(11):2124–2129

    CAS  PubMed  Google Scholar 

  28. Poon JS, Eves R, Mak AS (2010) Both lipid- and protein-phosphatase activities of PTEN contribute to the p53-PTEN anti-invasion pathway. Cell Cycle 9(22):4450–4454

    Article  CAS  PubMed  Google Scholar 

  29. Trotman LC et al (2007) Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128(1):141–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fouladkou F et al (2008) The ubiquitin ligase Nedd4-1 is dispensable for the regulation of PTEN stability and localization. Proc Natl Acad Sci U S A 105(25):8585–8590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang X et al (2007) NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128(1):129–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tibarewal P et al (2012) PTEN protein phosphatase activity correlates with control of gene expression and invasion, a tumor-suppressing phenotype, but not with AKT activity. Sci Signal 5(213):ra18

    Article  PubMed  Google Scholar 

  33. Liliental J et al (2000) Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr Biol 10(7):401–404

    Article  CAS  PubMed  Google Scholar 

  34. Zhang XC et al (2012) Functional analysis of the protein phosphatase activity of PTEN. Biochem J 444(3):457–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Williams R, Masson G, Vadas O, Burke J, Perisic O (2015) Structural mechanisms of PI3K and PTEN regulation. FASEB J 29(1):1–6

    Article  Google Scholar 

  36. Bolduc D et al (2013) Phosphorylation-mediated PTEN conformational closure and deactivation revealed with protein semisynthesis. Elife 2:e00691

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tang Y, Eng C (2006) p53 down-regulates phosphatase and tensin homologue deleted on chromosome 10 protein stability partially through caspase-mediated degradation in cells with proteasome dysfunction. Cancer Res 66(12):6139–6148

    Article  CAS  PubMed  Google Scholar 

  38. Han B et al (2003) Regulation of constitutive expression of mouse PTEN by the 5′-untranslated region. Oncogene 22(34):5325–5337

    Article  CAS  PubMed  Google Scholar 

  39. Stambolic V et al (2001) Regulation of PTEN transcription by p53. Mol Cell 8(2):317–325

    Article  CAS  PubMed  Google Scholar 

  40. Tamguney T, Stokoe D (2007) New insights into PTEN. J Cell Sci 120(Pt 23):4071–4079

    Article  CAS  PubMed  Google Scholar 

  41. Garcia JM et al (2004) Promoter methylation of the PTEN gene is a common molecular change in breast cancer. Genes Chromosomes Cancer 41(2):117–124

    Article  CAS  PubMed  Google Scholar 

  42. Goel A et al (2004) Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res 64(9):3014–3021

    Article  CAS  PubMed  Google Scholar 

  43. Kang YH, Lee HS, Kim WH (2002) Promoter methylation and silencing of PTEN in gastric carcinoma. Lab Invest 82(3):285–291

    Article  CAS  PubMed  Google Scholar 

  44. Poliseno L, Pandolfi PP (2015) PTEN ceRNA networks in human cancer. Methods 77–78C:41–50

    Article  Google Scholar 

  45. Vazquez F et al (2000) Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 20(14):5010–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Al-Khouri AM et al (2005) Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3beta. J Biol Chem 280(42):35195–35202

    Article  CAS  PubMed  Google Scholar 

  47. Cordier F et al (2012) Ordered phosphorylation events in two independent cascades of the PTEN C-tail revealed by NMR. J Am Chem Soc 134(50):20533–20543

    Article  CAS  PubMed  Google Scholar 

  48. Cordier F, Chaffotte A, Wolff N (2015) Quantitative and dynamic analysis of PTEN phosphorylation by NMR. Methods 77–78:82–91

    Article  PubMed  Google Scholar 

  49. Fragoso R, Barata JT (2015) Kinases, tails and more: regulation of PTEN function by phosphorylation. Methods 77–78:75–81

    Article  PubMed  Google Scholar 

  50. Vemula S et al (2010) ROCK1 functions as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability. Blood 115(9):1785–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Okumura K et al (2006) PCAF modulates PTEN activity. J Biol Chem 281(36):26562–26568

    Article  CAS  PubMed  Google Scholar 

  52. Kwon J et al (2004) Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci U S A 101(47):16419–16424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang X et al (2008) Crucial role of the C-terminus of PTEN in antagonizing NEDD4-1-mediated PTEN ubiquitination and degradation. Biochem J 414(2):221–229

    Article  CAS  PubMed  Google Scholar 

  54. Bar N, Dikstein R (2010) miR-22 forms a regulatory loop in PTEN/AKT pathway and modulates signaling kinetics. PLoS One 5(5):e10859

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li N et al (2015) Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth. Genes Dev 29(2):157–170

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lee JO et al (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99(3):323–334

    Article  CAS  PubMed  Google Scholar 

  57. Huang J et al (2012) SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nat Commun 3:911

    Article  PubMed  Google Scholar 

  58. Naguib A et al (2015) PTEN functions by recruitment to cytoplasmic vesicles. Mol Cell 58(2):255–268

    Article  CAS  PubMed  Google Scholar 

  59. Perren A et al (1999) Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. Am J Pathol 155(4):1253–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mutter GL et al (2000) Changes in endometrial PTEN expression throughout the human menstrual cycle. J Clin Endocrinol Metab 85(6):2334–2338

    CAS  PubMed  Google Scholar 

  61. Perren A et al (2000) Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am J Pathol 157(4):1097–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Deleris P et al (2003) SHIP-2 and PTEN are expressed and active in vascular smooth muscle cell nuclei, but only SHIP-2 is associated with nuclear speckles. J Biol Chem 278(40):38884–38891

    Article  CAS  PubMed  Google Scholar 

  63. Gimm O et al (2000) Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am J Pathol 156(5):1693–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tachibana M et al (2002) Expression and prognostic significance of PTEN product protein in patients with esophageal squamous cell carcinoma. Cancer 94(7):1955–1960

    Article  CAS  PubMed  Google Scholar 

  65. Whiteman DC et al (2002) Nuclear PTEN expression and clinicopathologic features in a population-based series of primary cutaneous melanoma. Int J Cancer 99(1):63–67

    Article  CAS  PubMed  Google Scholar 

  66. Fridberg M et al (2007) Protein expression and cellular localization in two prognostic subgroups of diffuse large B-cell lymphoma: higher expression of ZAP70 and PKC-beta II in the non-germinal center group and poor survival in patients deficient in nuclear PTEN. Leuk Lymphoma 48(11):2221–2232

    Article  CAS  PubMed  Google Scholar 

  67. Lindsay Y et al (2006) Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J Cell Sci 119(Pt 24):5160–5168

    Article  CAS  PubMed  Google Scholar 

  68. Bassi C et al (2013) Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science 341(6144):395–399

    Article  CAS  PubMed  Google Scholar 

  69. Dedes KJ et al (2010) PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci Transl Med 2(53):53ra75

    PubMed  Google Scholar 

  70. McEllin B et al (2010) PTEN loss compromises homologous recombination repair in astrocytes: implications for glioblastoma therapy with temozolomide or poly(ADP-ribose) polymerase inhibitors. Cancer Res 70(13):5457–5464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mendes-Pereira AM et al (2009) Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 1(6–7):315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hopkins BD et al (2013) A secreted PTEN phosphatase that enters cells to alter signaling and survival. Science 341(6144):399–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liang H et al (2014) PTENalpha, a PTEN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism. Cell Metab 19(5):836–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li Y et al (2014) Rab5 and Ndfip1 are involved in Pten ubiquitination and nuclear trafficking. Traffic 15(7):749–761

    Article  CAS  PubMed  Google Scholar 

  75. Pulido R et al (2014) A unified nomenclature and amino acid numbering for human PTEN. Sci Signal 7(332):pe15

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work in the authors’ laboratory is supported by the funds from the Canadian Institutes of Health Research and the Canadian Cancer Society. OG is supported by the Excellence in Radiation Research for the 21st century (EIRR21st) postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vuk Stambolic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gorbenko, O., Stambolic, V. (2016). PTEN at 18: Still Growing. In: Salmena, L., Stambolic, V. (eds) PTEN. Methods in Molecular Biology, vol 1388. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3299-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3299-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3297-9

  • Online ISBN: 978-1-4939-3299-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics