Skip to main content

Breast Cancer Stem Cell Isolation

  • Protocol
  • First Online:
Breast Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1406))

Abstract

Cells within the tumor are highly heterogeneous. Only a small portion of the cells within the tumor is capable to generate a new tumor. These cells are called cancer stem cells. Theoretically, cancer stem cells are originally from normal stem cells or early progenitor cells which accumulate the random mutations and undergo an altered version of the normal differentiation process. The cancer stem cell drives tumor progression and its recurrence. Thus, the technique to identify and purify the cancer stem cell is the key in any cancer stem cell research. In this protocol, we provide the basic technology of identification and purification of breast cancer stem cells as well as further functional assays to help the researchers achieve their research goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Ricardo S, Vieira AF, Gerhard R, Leitao D, Pinto R, Cameselle-Teijeiro JF, Milanezi F, Schmitt F, Paredes J (2011) Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol 64(11):937–946. doi:10.1136/jcp.2011.090456.jcp.2011.090456 [pii]

    Article  PubMed  Google Scholar 

  3. Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, Tamaki Y, Noguchi S (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15(12):4234–4241. doi:10.1158/1078-0432.CCR-08-1479, 1078–0432.CCR-08-1479 [pii]

    Article  PubMed  CAS  Google Scholar 

  4. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567. doi:10.1016/j.stem.2007.08.014, S1934-5909(07)00133-6 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Naor D, Sionov RV, Ish-Shalom D (1997) CD44: structure, function, and association with the malignant process. Adv Cancer Res 71:241–319

    Article  PubMed  CAS  Google Scholar 

  6. Zoller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11(4):254–267. doi:10.1038/nrc3023, nrc3023 [pii]

    Article  PubMed  Google Scholar 

  7. Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP, Wohlgemuth R (2008) Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 14(2):181–187. doi:10.1038/nm1703, nm1703 [pii]

    Article  PubMed  CAS  Google Scholar 

  8. Draffin JE, McFarlane S, Hill A, Johnston PG, Waugh DJ (2004) CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 64(16):5702–5711. doi:10.1158/0008-5472.CAN-04-0389, 64/16/5702 [pii]

    Article  PubMed  CAS  Google Scholar 

  9. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4(1):33–45. doi:10.1038/nrm1004, nrm1004 [pii]

    Article  PubMed  CAS  Google Scholar 

  10. Lee HJ, Choe G, Jheon S, Sung SW, Lee CT, Chung JH (2010) CD24, a novel cancer biomarker, predicting disease-free survival of non-small cell lung carcinomas: a retrospective study of prognostic factor analysis from the viewpoint of forthcoming (seventh) new TNM classification. J Thorac Oncol 5(5):649–657. doi:10.1097/JTO.0b013e3181d5e554

    Article  PubMed  Google Scholar 

  11. Jaggupilli A, Elkord E (2012) Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol 2012:708036. doi:10.1155/2012/708036

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fang X, Zheng P, Tang J, Liu Y (2010) CD24: from A to Z. Cell Mol Immunol 7(2):100–103. doi:10.1038/cmi.2009.119, cmi2009119 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Chute JP, Muramoto GG, Whitesides J, Colvin M, Safi R, Chao NJ, McDonnell DP (2006) Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci U S A 103(31):11707–11712. doi:10.1073/pnas.0603806103, 0603806103 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Charafe-Jauffret E, Ginestier C, Bertucci F, Cabaud O, Wicinski J, Finetti P, Josselin E, Adelaide J, Nguyen TT, Monville F, Jacquemier J, Thomassin-Piana J, Pinna G, Jalaguier A, Lambaudie E, Houvenaeghel G, Xerri L, Harel-Bellan A, Chaffanet M, Viens P, Birnbaum D (2013) ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program. Cancer Res 73(24):7290–7300. doi:10.1158/0008-5472.CAN-12-4704, 0008–5472.CAN-12-4704 [pii]

    Article  PubMed  CAS  Google Scholar 

  15. Wu S, Xue W, Huang X, Yu X, Luo M, Huang Y, Liu Y, Bi Z, Qiu X, Bai S (2015) Distinct prognostic values of ALDH1 isoenzymes in breast cancer. Tumour Biol 36(4):2421–2426. doi:10.1007/s13277-014-2852-6

    Article  PubMed  CAS  Google Scholar 

  16. Osta WA, Chen Y, Mikhitarian K, Mitas M, Salem M, Hannun YA, Cole DJ, Gillanders WE (2004) EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res 64(16):5818–5824. doi:10.1158/0008-5472.CAN-04-0754, 64/16/5818 [pii]

    Article  PubMed  CAS  Google Scholar 

  17. Baeuerle PA, Gires O (2007) EpCAM (CD326) finding its role in cancer. Br J Cancer 96(3):417–423. doi:10.1038/sj.bjc.6603494, 6603494 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Sears HF, Atkinson B, Mattis J, Ernst C, Herlyn D, Steplewski Z, Hayry P, Koprowski H (1982) Phase-I clinical trial of monoclonal antibody in treatment of gastrointestinal tumours. Lancet 1(8275):762–765

    Article  PubMed  CAS  Google Scholar 

  19. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  PubMed  CAS  Google Scholar 

  20. Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36(Suppl 1):59–72, doi: 274 [pii]

    Article  PubMed  CAS  Google Scholar 

  21. Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8(5):486–498. doi:10.1016/j.stem.2011.04.007, S1934-5909(11)00172-X [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Stingl J (2009) Detection and analysis of mammary gland stem cells. J Pathol 217(2):229–241. doi:10.1002/path.2457

    Article  PubMed  CAS  Google Scholar 

  23. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, Klein C, Saini M, Bauerle T, Wallwiener M, Holland-Letz T, Hofner T, Sprick M, Scharpff M, Marme F, Sinn HP, Pantel K, Weichert W, Trumpp A (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31(6):539–544. doi:10.1038/nbt.2576, nbt.2576 [pii]

    Article  PubMed  CAS  Google Scholar 

  24. Theodoropoulos PA, Polioudaki H, Agelaki S, Kallergi G, Saridaki Z, Mavroudis D, Georgoulias V (2010) Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett 288(1):99–106. doi:10.1016/j.canlet.2009.06.027, S0304-3835(09)00453-4 [pii]

    Article  PubMed  CAS  Google Scholar 

  25. Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 8(7):545–554. doi:10.1038/nrc2419, nrc2419 [pii]

    Article  PubMed  CAS  Google Scholar 

  26. Suzuki M, Mose ES, Montel V, Tarin D (2006) Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am J Pathol 169(2):673–681. doi:10.2353/ajpath.2006.060053, doi:S0002-9440(10)62746-0 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A, Shen R, Brogi E, Brivanlou AH, Giancotti FG (2012) The BMP inhibitor coco reactivates breast cancer cells at lung metastatic sites. Cell 150(4):764–779. doi:10.1016/j.cell.2012.06.035, S0092-8674(12)00872-0 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Jiao X, Katiyar S, Willmarth NE, Liu M, Ma X, Flomenberg N, Lisanti MP, Pestell RG (2010) c-Jun induces mammary epithelial cellular invasion and breast cancer stem cell expansion. J Biol Chem 285(11):8218–8226. doi:10.1074/jbc.M110.100792, M110.100792 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Wu K, Jiao X, Li Z, Katiyar S, Casimiro MC, Yang W, Zhang Q, Willmarth NE, Chepelev I, Crosariol M, Wei Z, Hu J, Zhao K, Pestell RG (2011) Cell fate determination factor Dachshund reprograms breast cancer stem cell function. J Biol Chem 286(3):2132–2142. doi:10.1074/jbc.M110.148395, M110.148395 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L (2008) Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10(1):R10. doi:10.1186/bcr1855, bcr1855 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang M, Behbod F, Atkinson RL, Landis MD, Kittrell F, Edwards D, Medina D, Tsimelzon A, Hilsenbeck S, Green JE, Michalowska AM, Rosen JM (2008) Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 68(12):4674–4682. doi:10.1158/0008-5472.CAN-07-6353, 68/12/4674 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE (2008) The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 68(19):7711–7717. doi:10.1158/0008-5472.CAN-08-1949, 68/19/7711 [pii]

    Article  PubMed  CAS  Google Scholar 

  33. Grange C, Lanzardo S, Cavallo F, Camussi G, Bussolati B (2008) Sca-1 identifies the tumor-initiating cells in mammary tumors of BALB-neuT transgenic mice. Neoplasia 10(12):1433–1443

    Article  PubMed  PubMed Central  Google Scholar 

  34. Eriksson PO, Aaltonen E, Petoral R Jr, Lauritzson P, Miyazaki H, Pietras K, Mansson S, Hansson L, Leander P, Axelsson O (2014) Novel nano-sized MR contrast agent mediates strong tumor contrast enhancement in an oncogene-driven breast cancer model. PLoS One 9(10):e107762. doi:10.1371/journal.pone.0107762, PONE-D-14-18269 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from NIH R01CA70896, R01CA75503, R01CA86072 (R.G.P.), the Breast Cancer Research Foundation (R.G.P.), and the Department of Defense Concept Award W81XWH-1101-0303. The Sidney Kimmel Cancer Center was supported by the NIH Cancer Center Core Grant P30CA56036 (R.G.P). This project is funded in part by the Dr. Ralph and Marian C. Falk Medical Research Trust (R.G.P.), grants from the Pennsylvania Department of Health (R.G.P.). The Department specifically disclaims responsibility for analyses, interpretations, or conclusions. There are no conflicts of interest associated with this manuscript.

Conflicts of Interest: RGP is the founder of ProstaGene, LLC and owns patents related to prostate cancer cell lines and their uses thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Pestell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jiao, X., Rizvanov, A.A., Cristofanilli, M., Miftakhova, R.R., Pestell, R.G. (2016). Breast Cancer Stem Cell Isolation. In: Cao, J. (eds) Breast Cancer. Methods in Molecular Biology, vol 1406. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3444-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3444-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3442-3

  • Online ISBN: 978-1-4939-3444-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics