Skip to main content

Clinical-Grade Manufacturing of Therapeutic Human Mesenchymal Stem/Stromal Cells in Microcarrier-Based Culture Systems

  • Protocol
  • First Online:
Mesenchymal Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1416))

Abstract

The therapeutic potential of mesenchymal stem/stromal cells (MSC) has triggered the need for high cell doses in a vast number of clinical applications. This demand requires the development of good manufacturing practices (GMP)-compliant ex vivo expansion protocols that should be effective to deliver a robust and reproducible supply of clinical-grade cells in a safe and cost-effective manner. Controlled stirred-tank bioreactor systems under xenogeneic (xeno)-free culture conditions offer ideal settings to develop and optimize cell manufacturing to meet the standards and needs of human MSC for cellular therapies. Herein we describe two microcarrier-based stirred culture systems using spinner flasks and controlled stirred-tank bioreactors under xeno-free conditions for the efficient ex vivo expansion of human bone marrow and adipose tissue-derived MSC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12:87–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Trounson A, Thakar RG, Lomax G et al (2011) Clinical trials for stem cell therapies. BMC Med. doi:10.1186/1741-7015-9-52

    PubMed  PubMed Central  Google Scholar 

  3. da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  PubMed  Google Scholar 

  4. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  5. Atoui R, Chiu RC (2012) Concise review: immunomodulatory properties of mesenchymal stem cells in cellular transplantation: update, controversies, and unknowns. Stem Cells Transl Med 1:200–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dittmar T, Entschladen F (2013) Migratory properties of mesenchymal stem cells. Adv Biochem Eng Biotechnol 129:117–136

    CAS  PubMed  Google Scholar 

  7. Singer NG, Caplan AI (2011) Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 6:457–478

    Article  CAS  PubMed  Google Scholar 

  8. Migliaccio G, Pintus C (2013) Role of the EU framework in regulation of stem cell-based products. Adv Biochem Eng Biotechnol 130:287–299

    PubMed  Google Scholar 

  9. Bieback K, Kinzebach S, Karagianni M (2011) Translating research into clinical scale manufacturing of mesenchymal stromal cells. Stem Cells Int 2010:193519

    PubMed  PubMed Central  Google Scholar 

  10. Thirumala S, Goebel WS, Woods EJ (2013) Manufacturing and banking of mesenchymal stem cells. Expert Opin Biol Ther 13:673–691

    Article  CAS  PubMed  Google Scholar 

  11. Bieback K, Schallmoser K, Kluter H et al (2008) Clinical protocols for the isolation and expansion of mesenchymal stromal cells. Transfus Med Hemother 35:286–294

    PubMed  PubMed Central  Google Scholar 

  12. Kirouac DC, Zandstra PW (2008) The systematic production of cells for cell therapies. Cell Stem Cell 3:369–381

    Article  CAS  PubMed  Google Scholar 

  13. Rodrigues CA, Fernandes TG, Diogo MM et al (2011) Stem cell cultivation in bioreactors. Biotechnol Adv 29:815–829

    Article  CAS  PubMed  Google Scholar 

  14. Dos Santos F, Andrade PZ, Silva CL et al (2013) Scaling-up ex vivo expansion of mesenchymal stem/stromal cells for cellular therapies. In: Chase LG, Vemuri MC (eds) Mesenchymal stem cell therapy. Humana Press, New York, pp 1–14

    Chapter  Google Scholar 

  15. Eibes G, dos Santos F, Andrade PZ et al (2010) Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. J Biotechnol 146:194–197

    Article  CAS  PubMed  Google Scholar 

  16. Dos Santos F, Andrade PZ, Abecasis MM et al (2011) Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng Part C Methods 17:1201–1210

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schop D, van Dijkhuizen-Radersma R, Borgart E et al (2010) Expansion of human mesenchymal stromal cells on microcarriers: growth and metabolism. J Tissue Eng Regen Med 4:131–140

    Article  CAS  PubMed  Google Scholar 

  18. Yuan Y, Kallos MS, Hunter C et al (2014) Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture. J Tissue Eng Regen Med 8:210–225

    Article  CAS  PubMed  Google Scholar 

  19. Rafiq QA, Brosnan KM, Coopman K et al (2013) Culture of human mesenchymal stem cells on microcarriers in a 5 l stirred-tank bioreactor. Biotechnol Lett 35:1233–1245

    Article  CAS  PubMed  Google Scholar 

  20. Hewitt CJ, Lee K, Nienow AW et al (2011) Expansion of human mesenchymal stem cells on microcarriers. Biotechnol Lett 33:2325–2335

    Article  CAS  PubMed  Google Scholar 

  21. Dos Santos F, Campbell A, Fernandes-Platzgummer A et al (2014) A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells. Biotechnol Bioeng 111:1116–1127

    Article  PubMed  Google Scholar 

  22. Hupfeld J, Gorr IH, Schwald C et al (2014) Modulation of mesenchymal stromal cell characteristics by microcarrier culture in bioreactors. Biotechnol Bioeng. doi:10.1002/bit.25281

    PubMed  Google Scholar 

  23. Miwa H, Hashimoto Y, Tensho K et al (2012) Xeno-free proliferation of human bone marrow mesenchymal stem cells. Cytotechnology 64:301–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fekete N, Rojewski MT, Furst D et al (2012) GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC. PLoS One 7:e43255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kinzebach S, Bieback K (2013) Expansion of mesenchymal stem/stromal cells under xenogeneic-free culture conditions. Adv Biochem Eng Biotechnol 129:33–57

    PubMed  Google Scholar 

  26. Lindroos B, Boucher S, Chase L et al (2009) Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy 11:958–972

    Article  CAS  PubMed  Google Scholar 

  27. Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369

    Article  PubMed  Google Scholar 

  28. Chase LG, Yang S, Zachar V et al (2012) Development and characterization of a clinically compliant xeno-free culture medium in good manufacturing practice for human multipotent mesenchymal stem cells. Stem Cells Transl Med 1:750–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bernardo ME, Avanzini MA, Perotti C et al (2007) Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for a fetal calf serum substitute. J Cell Physiol 211:121–130

    Article  CAS  PubMed  Google Scholar 

  30. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  31. Carmelo JG (2013) Optimizing the production of human mesenchymal stem/stromal cells in xeno-free microcarrier-based reactor systems. MSc Dissertation, Instituto Superior Técnico, Universidade de Lisboa, Lisboa

    Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge Jeffrey M. Gimble, M.D. (Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, Louisiana, USA) for kindly providing the human adipose-derived stem/stromal cells. The authors also thank the financial support from Fundação para a Ciência e a Tecnologia (FCT), Portugal, through iBB - Institute for Bioengineering and Biosciences under the project UID/BIO/04565/2013 and Programa Operacional Regional de Lisboa 2020 (Project N. 007317), projects PTDC/EQU-EQU/114231/2009 and HMSP-ICT/0001/2011 and grant SFRH/BPD/82062/2011 (awarded to AFP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Lobato da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fernandes-Platzgummer, A., Carmelo, J.G., da Silva, C.L., Cabral, J.M.S. (2016). Clinical-Grade Manufacturing of Therapeutic Human Mesenchymal Stem/Stromal Cells in Microcarrier-Based Culture Systems. In: Gnecchi, M. (eds) Mesenchymal Stem Cells. Methods in Molecular Biology, vol 1416. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3584-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3584-0_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3582-6

  • Online ISBN: 978-1-4939-3584-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics