Skip to main content

Quantification and Localization of S-Nitrosothiols (SNOs) in Higher Plants

  • Protocol
  • First Online:
Plant Nitric Oxide

Abstract

S-nitrosothiols (SNOs) are a family of molecules produced by the reaction of nitric oxide (NO) with –SH thiol groups present in the cysteine residues of proteins and peptides caused by a posttranslational modification (PTM) known as S-nitrosylation (strictly speaking S-nitrosation) that can affect the cellular function of proteins. These molecules are a relatively more stable form of NO and consequently can act as a major intracellular NO reservoir and, in some cases, as a long-distance NO signal. Additionally, SNOs can be transferred between small peptides and protein thiol groups through S-transnitrosylation mechanisms. Thus, detection and cellular localization of SNOs in plant cells can be useful tools to determine how these molecules are modulated under physiological and adverse conditions and to determine their importance as a mechanism for regulating different biochemical pathways. Using a highly sensitive chemiluminescence ozone technique and a specific fluorescence probe (Alexa Fluor 488 Hg-link phenylmercury), the methods described in this chapter enable us to determine SNOs in an nM range as well as their cellular distribution in the tissues of different plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lamattina L, García-Mata C, Graziano M et al (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  2. Neill SJ, Desikan R, Clarke A et al (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  3. Shapiro AD (2005) Nitric oxide signaling in plants. Vitam Horm 72:339–398

    Article  CAS  PubMed  Google Scholar 

  4. Corpas FJ, Leterrier M, Valderrama R et al (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611

    Article  CAS  PubMed  Google Scholar 

  5. Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  CAS  PubMed  Google Scholar 

  6. Corpas FJ, del Río LA, Barroso JB (2007) Need of biomarkers of nitrosative stress in plants. Trends Plant Sci 12:436–438

    Article  CAS  PubMed  Google Scholar 

  7. Radi R (2013) Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288:26464–26472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    Article  CAS  PubMed  Google Scholar 

  9. Jourd’heuil D, Jourd’heuil FL, Lowery AM et al (2005) Detection of nitrosothiols and other nitroso species in vitro and in cells. Methods Enzymol 396:118–131

    Article  PubMed  Google Scholar 

  10. Broniowska KA, Hogg N (2012) The chemical biology of S-nitrosothiols. Antioxid Redox Signal 17:969–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith BC, Marletta MA (2012) Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Curr Opin Chem Biol 16:498–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corpas FJ, del Río LA, Barroso JB (2008) Post-translational modifications mediated by reactive nitrogen species: nitrosative stress responses or components of signal transduction pathways? Plant Signal Behav 3:301–303

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gould N, Doulias PT, Tenopoulou M et al (2013) Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J Biol Chem 288:26473–26479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yun BW, Feechan A, Yin M et al (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268

    Article  CAS  PubMed  Google Scholar 

  16. Astier J, Kulik A, Koen E et al (2012) Protein S-nitrosylation: what’s going on in plants? Free Radic Biol Med 53:1101–1110

    Article  CAS  PubMed  Google Scholar 

  17. Begara-Morales JC, Chaki M, Sánchez-Calvo B et al (2013) Protein tyrosine nitration in pea roots during development and senescence. J Exp Bot 64:1121–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Corpas FJ, Begara-Morales JC, Sánchez-Calvo B et al (2015) Nitration and S-nitrosylation: two post-translational modifications (PTMs) mediated by reactive nitrogen species (RNS) which participate in signalling processes of plant cells. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communication in plants, vol 23, Signaling and communication in plants. Springer, New York. doi:10.1007/978-3-319-10079-1_13. ISBN 978-3-319-10078-4

    Chapter  Google Scholar 

  19. Noctor G, Mhamdi A, Chaouch S et al (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  20. Corpas FJ, Alché JD, Barroso JB (2013) Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front Plant Sci 4:126

    PubMed  PubMed Central  Google Scholar 

  21. Doulias PT, Raju K, Greene JL et al (2013) Mass spectrometry-based identification of S-nitrosocysteine in vivo using organic mercury assisted enrichment. Methods 62:165–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Diers AR, Keszler A, Hogg N (2014) Detection of S-nitrosothiols. Biochim Biophys Acta 1840:892–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Valderrama R, Corpas FJ, Carreras A et al (2007) Nitrosative stress in plants. FEBS Lett 581:453–461

    Article  CAS  PubMed  Google Scholar 

  24. Corpas FJ, Chaki M, Fernández-Ocaña A et al (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49:1711–1722

    Article  CAS  PubMed  Google Scholar 

  25. Chaki M, Fernández-Ocaña AM, Valderrama R et al (2009) Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower-mildew interaction. Plant Cell Physiol 50:265–279

    Article  CAS  PubMed  Google Scholar 

  26. Chaki M, Valderrama R, Fernández-Ocaña AM et al (2011) High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitration. Plant Cell Environ 34:1803–1818

    Article  CAS  PubMed  Google Scholar 

  27. Chaki M, Valderrama R, Fernández-Ocaña AM et al (2011) Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J Exp Bot 62:1803–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Begara-Morales JC, Sánchez-Calvo B, Chaki M et al (2014) Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot 65:527–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feelisch M, Rassaf T, Mnaimneh S et al (2002) Concomitant S-, N-, and heme-nitros(yl)ation in biological tissues and fluids: implications for the fate of NO in vivo. FASEB J 16:1775–1785

    Article  CAS  PubMed  Google Scholar 

  30. Corpas FJ, Carreras A, Esteban FJ et al (2008) Localization of S-nitrosothiols and assay of nitric oxide synthase and S-nitrosoglutathione reductase activity in plants. Methods Enzymol 437:561–574

    Article  CAS  PubMed  Google Scholar 

  31. Singh RJ, Hogg N, Joseph J, Kalyanaraman B et al (1996) Mechanism of nitric oxide release from S-nitrosothiols. J Biol Chem 271:18596–18603

    Article  CAS  PubMed  Google Scholar 

  32. Williams DLH (1996) The mechanism of nitric oxide formation from S-nitrosothiols. Chem Commun 10:1085–1090

    Article  Google Scholar 

  33. Smith JN, Dasgupta TP (2000) Kinetics and mechanism of the decomposition of S-nitrosoglutathione by L-ascorbic acid and copper ions in aqueous solution to produce nitric oxide. Nitric Oxide 4:57–66

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an ERDF-cofinanced grant from the Ministry of Science and Innovation (BIO2012-33904) and Junta de Andalucía (groups BIO192 and BIO286).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan B. Barroso or Francisco J. Corpas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Barroso, J.B. et al. (2016). Quantification and Localization of S-Nitrosothiols (SNOs) in Higher Plants. In: Gupta, K. (eds) Plant Nitric Oxide. Methods in Molecular Biology, vol 1424. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3600-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3600-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3598-7

  • Online ISBN: 978-1-4939-3600-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics