Skip to main content

Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells

  • Protocol
  • First Online:
Chromosome Architecture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1431))

Abstract

The ability to detect individual fluorescent molecules inside living cells has enabled a range of powerful microscopy techniques that resolve biological processes on the molecular scale. These methods have also transformed the study of bacterial cell biology, which was previously obstructed by the limited spatial resolution of conventional microscopy. In the case of DNA-binding proteins, super-resolution microscopy can visualize the detailed spatial organization of DNA replication, transcription, and repair processes by reconstructing a map of single-molecule localizations. Furthermore, DNA-binding activities can be observed directly by tracking protein movement in real time. This allows identifying subpopulations of DNA-bound and diffusing proteins, and can be used to measure DNA-binding times in vivo. This chapter provides a detailed protocol for super-resolution microscopy and tracking of DNA-binding proteins in Escherichia coli cells. The protocol covers the construction of cell strains and describes data acquisition and analysis procedures, such as super-resolution image reconstruction, mapping single-molecule tracks, computing diffusion coefficients to identify molecular subpopulations with different mobility, and analysis of DNA-binding kinetics. While the focus is on the study of bacterial chromosome biology, these approaches are generally applicable to other molecular processes and cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  CAS  PubMed  Google Scholar 

  2. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–5

    Article  CAS  PubMed  Google Scholar 

  3. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Biteen JS, Thompson MA, Tselentis NK et al (2008) Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods 5:947–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. English BP, Hauryliuk V, Sanamrad A et al (2011) Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc Natl Acad Sci U S A 108:E365–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garner EC, Bernard R, Wang W et al (2011) Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333:222–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greenfield D, McEvoy AL, Shroff H et al (2009) Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol 7, e1000137

    Article  PubMed  PubMed Central  Google Scholar 

  8. Badrinarayanan A, Reyes-Lamothe R, Uphoff S et al (2012) In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338:528–531

    Article  CAS  PubMed  Google Scholar 

  9. Uphoff S, Reyes-Lamothe R, de Leon FG et al (2013) Single-molecule DNA repair in live bacteria. Proc Natl Acad Sci U S A 110:8063–8068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Endesfelder U, Finan K, Holden SJ et al (2013) Multiscale spatial organization of RNA polymerase in Escherichia coli. Biophys J 105:172–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bakshi S, Dalrymple RM, Li W et al (2013) Partitioning of RNA polymerase activity in live Escherichia coli from analysis of single-molecule diffusive trajectories. Biophys J 105:2676–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fiche J-B, Cattoni DI, Diekmann N et al (2013) Recruitment, assembly, and molecular architecture of the SpoIIIE DNA pump revealed by superresolution microscopy. PLoS Biol 11, e1001557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holden SJ, Pengo T, Meibom KL et al (2014) High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization. Proc Natl Acad Sci U S A 111:4566–4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Diepold A, Kudryashev M, Delalez NJ et al (2015) Composition, formation, and regulation of the cytosolic c-ring, a dynamic component of the type III secretion injectisome. PLoS Biol 13, e1002039

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stracy M, Lesterlin C, de Leon FG et al (2015) Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc Natl Acad Sci U S A 201507592

    Google Scholar 

  16. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399

    Article  CAS  PubMed  Google Scholar 

  17. Manley S, Gillette JM, Patterson GH et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157

    Article  CAS  PubMed  Google Scholar 

  18. Gebhardt JCM, Suter DM, Roy R et al (2013) Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods 10:421–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Etheridge TJ, Boulineau RL, Herbert A et al (2014) Quantification of DNA-associated proteins inside eukaryotic cells using single-molecule localization microscopy. Nucleic Acids Res 42:e146–e146

    Article  PubMed  PubMed Central  Google Scholar 

  20. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Subach FV, Patterson GH, Manley S et al (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Meth 6:153–159

    Article  CAS  Google Scholar 

  22. Reyes-Lamothe R, Possoz C, Danilova O et al (2008) Independent positioning and action of Escherichia coli replisomes in live cells. Cell 133:90–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Uphoff S, Sherratt DJ, Kapanidis AN (2014) Visualizing protein-DNA interactions in live bacterial cells using photoactivated single-molecule tracking. J Vis Exp 85:24638084

    Google Scholar 

  25. Thomason LC, Costantino N, Court DL (2007) E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol Chapter 1:Unit 1.17

    PubMed  Google Scholar 

  26. Holden SJ, Uphoff S, Hohlbein J et al (2010) Defining the limits of single-molecule FRET resolution in TIRF microscopy. Biophys J 99:3102–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mortensen KI, Churchman LS, Spudich JA et al (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7:377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smith CS, Joseph N, Rieger B et al (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7:373–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bakshi S, Siryaporn A, Goulian M et al (2012) Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol Microbiol 85:21–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    Article  CAS  Google Scholar 

  31. Persson F, Lindén M, Unoson C et al (2013) Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat Methods 10:265–269

    Article  CAS  PubMed  Google Scholar 

  32. Veatch SL, Machta BB, Shelby SA et al (2012) Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting. PLoS One 7, e31457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sengupta P, Jovanovic-Talisman T, Lippincott-Schwartz J (2013) Quantifying spatial organization in point-localization superresolution images using pair correlation analysis. Nat Protoc 8:345–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  PubMed  PubMed Central  Google Scholar 

  35. Landgraf D, Okumus B, Chien P et al (2012) Segregation of molecules at cell division reveals native protein localization. Nat Methods 9:480–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang S, Moffitt JR, Dempsey GT et al (2014) Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging. Proc Natl Acad Sci U S A 111:8452–8457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee S-H, Shin JY, Lee A et al (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc Natl Acad Sci U S A 109:17436–17441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Durisic N, Laparra-Cuervo L, Sandoval-Álvarez Á et al (2014) Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat Methods 11:156–162

    Article  CAS  PubMed  Google Scholar 

  39. Small A, Stahlheber S (2014) Fluorophore localization algorithms for super-resolution microscopy. Nat Methods 11:267–279

    Article  CAS  PubMed  Google Scholar 

  40. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Holden SJ, Uphoff S, Kapanidis AN (2011) DAOSTORM: an algorithm for high- density super-resolution microscopy. Nat Methods 8:279–280

    Article  CAS  PubMed  Google Scholar 

  42. Zhu L, Zhang W, Elnatan D et al (2012) Faster STORM using compressed sensing. Nat Methods 9:721–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Rodrigo Reyes-Lamothe, David J. Sherratt, and Achillefs N. Kapanidis helped with the original development of this protocol. Katarzyna Ginda and David J. Sherratt are thanked for their comments on the manuscript. Stephan Uphoff was funded by a Sir Henry Wellcome Postdoctoral Fellowship by the Wellcome Trust (101636/Z/13/Z) and a Junior Research Fellowship at St. John’s College, Oxford. Microscopy at Micron Oxford was supported by a Wellcome Trust Strategic Award (091911) and MRC grant (MR/K01577X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Uphoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Uphoff, S. (2016). Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells. In: Leake, M. (eds) Chromosome Architecture. Methods in Molecular Biology, vol 1431. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3631-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3631-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3629-8

  • Online ISBN: 978-1-4939-3631-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics