Skip to main content

Fluorescence Lifetime Imaging of Cancer In Vivo

  • Protocol
  • First Online:
In Vivo Fluorescence Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1444))

  • 2248 Accesses

Abstract

Optical imaging of fluorescent reporters in animal models of cancer has become a common tool in oncologic research. Fluorescent reporters including fluorescent proteins, organic dyes, and inorganic photonic materials are used in fluorescence spectroscopy, microscopy, and whole body preclinical imaging. Fluorescence lifetime imaging provides additional, quantitative information beyond that of conventional fluorescence intensity signals, enabling signal multiplexing, background separation, and biological sensing unique to fluorescent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A 89(4):1271–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhong W, Wu M, Chang CW, Merrick KA, Merajver SD, Mycek MA (2007) Picosecond-resolution fluorescence lifetime imaging microscopy: a useful tool for sensing molecular interactions in vivo via FRET. Opt Express 15(26):18220–18235

    Article  PubMed  Google Scholar 

  3. Kumar AT, Raymond SB, Bacskai BJ, Boas DA (2008) Comparison of frequency-domain and time-domain fluorescence lifetime tomography. Opt Lett 33(5):470–472

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nothdurft RE, Patwardhan SV, Akers W, Ye Y, Achilefu S, Culver JP (2009) In vivo fluorescence lifetime tomography. J Biomed Opt 14(2):024004

    Article  PubMed  Google Scholar 

  5. Kumar AT, Raymond SB, Dunn AK, Bacskai BJ, Boas DA (2008) A time domain fluorescence tomography system for small animal imaging. IEEE Trans Med Imaging 27(8):1152–1163

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rice WL, Kumar AT (2014) Preclinical whole body time domain fluorescence lifetime multiplexing of fluorescent proteins. J Biomed Opt 19(4):046005

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kumar AT, Chung E, Raymond SB, Van de Water JA, Shah K, Fukumura D, Jain RK, Bacskai BJ, Boas DA (2009) Feasibility of in vivo imaging of fluorescent proteins using lifetime contrast. Opt Lett 34(13):2066–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang X, Bloch S, Akers W, Achilefu S (2012) Near-infrared molecular probes for in vivo imaging. Curr Protoc Cytom Chapter 12: Unit12 27

    Google Scholar 

  9. Akers W, Lesage F, Holten D, Achilefu S (2007) In vivo resolution of multiexponential decays of multiple near-infrared molecular probes by fluorescence lifetime-gated whole-body time-resolved diffuse optical imaging. Mol Imaging 6(4):237–246

    CAS  PubMed  Google Scholar 

  10. Bloch S, Lesage F, McIntosh L, Gandjbakhche A, Liang K, Achilefu S (2005) Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice. J Biomed Opt 10(5):54003

    Article  Google Scholar 

  11. Godavarty A, Sevick-Muraca EM, Eppstein MJ (2005) Three-dimensional fluorescence lifetime tomography. Med Phys 32(4):992–1000

    Article  PubMed  Google Scholar 

  12. Hassan M, Riley J, Chernomordik V, Smith P, Pursley R, Lee SB, Capala J, Gandjbakhche AH (2007) Fluorescence lifetime imaging system for in vivo studies. Mol Imaging 6(4):229–236

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Abulrob A, Brunette E, Slinn J, Baumann E, Stanimirovic D (2007) In vivo time domain optical imaging of renal ischemia-reperfusion injury: discrimination based on fluorescence lifetime. Mol Imaging 6(5):304–314

    CAS  PubMed  Google Scholar 

  14. Gurfinkel M, Thompson AB, Ralston W, Troy TL, Moore AL, Moore TA, Gust JD, Tatman D, Reynolds JS, Muggenburg B, Nikula K, Pandey R, Mayer RH, Hawrysz DJ, Sevick-Muraca EM (2000) Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study. Photochem Photobiol 72(1):94–102

    Article  CAS  PubMed  Google Scholar 

  15. Cerussi AE, Maier JS, Fantini S, Franceschini MA, Mantulin WW, Gratton E (1997) Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues. Appl Opt 36(1):116–124

    Article  CAS  PubMed  Google Scholar 

  16. Kuwana E, Sevick-Muraca EM (2002) Fluorescence lifetime spectroscopy in multiply scattering media with dyes exhibiting multiexponential decay kinetics. Biophys J 83(2):1165–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ntziachristos V, Ripoll J, Weissleder R (2002) Would near-infrared fluorescence signals propagate through large human organs for clinical studies? Opt Lett 27(5):333–335

    Article  PubMed  Google Scholar 

  18. Goiffon RJ, Akers WJ, Berezin MY, Lee H, Achilefu S (2009) Dynamic noninvasive monitoring of renal function in vivo by fluorescence lifetime imaging. J Biomed Opt 14(2):020501

    Article  PubMed  PubMed Central  Google Scholar 

  19. Akers WJ, Berezin MY, Lee H, Achilefu S (2008) Predicting in vivo fluorescence lifetime behavior of near-infrared fluorescent contrast agents using in vitro measurements. J Biomed Opt 13(5):054042

    Article  PubMed  PubMed Central  Google Scholar 

  20. Solomon M, Guo K, Sudlow GP, Berezin MY, Edwards WB, Achilefu S, Akers WJ (2011) Detection of enzyme activity in orthotopic murine breast cancer by fluorescence lifetime imaging using a fluorescence resonance energy transfer-based molecular probe. J Biomed Opt 16(6):066019

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee H, Akers W, Bhushan K, Bloch S, Sudlow G, Tang R, Achilefu S (2011) Near-infrared pH-activatable fluorescent probes for imaging primary and metastatic breast tumors. Bioconjug Chem 22(4):777–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berezin MY, Guo K, Akers W, Northdurft RE, Culver JP, Teng B, Vasalatiy O, Barbacow K, Gandjbakhche A, Griffiths GL, Achilefu S (2011) Near-infrared fluorescence lifetime pH-sensitive probes. Biophys J 100(8):2063–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akers WJ, Xu B, Lee H, Sudlow GP, Fields GB, Achilefu S, Edwards WB (2012) Detection of MMP-2 and MMP-9 activity in vivo with a triple-helical peptide optical probe. Bioconjug Chem 23(3):656–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Z, Fan J, Cheney PP, Berezin MY, Edwards WB, Akers WJ, Shen D, Liang K, Culver JP, Achilefu S (2009) Activatable molecular systems using homologous near-infrared fluorescent probes for monitoring enzyme activities in vitro, in cellulo, and in vivo. Mol Pharm 6(2):416–427

    Article  CAS  PubMed  Google Scholar 

  25. Lee H, Akers WJ, Cheney PP, Edwards WB, Liang K, Culver JP, Achilefu S (2009) Complementary optical and nuclear imaging of caspase-3 activity using combined activatable and radio-labeled multimodality molecular probe. J Biomed Opt 14(4):040507

    Article  PubMed  PubMed Central  Google Scholar 

  26. Magalotti S, Gustafson TP, Cao Q, Abendschein DR, Pierce RA, Berezin MY, Akers WJ (2013) Evaluation of inflammatory response to acute ischemia using near-infrared fluorescent reactive oxygen sensors. Mol Imaging Biol 15(4):423–430

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hayashi A, Asanuma D, Kamiya M, Urano Y, Okabe S (2016) High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: visualization of AMPA-type glutamate receptor endocytosis in living neurons. Neuropharmacology 100:66–75

    Article  CAS  PubMed  Google Scholar 

  28. Sundaram GS, Garai K, Rath NP, Yan P, Cirrito JR, Cairns NJ, Lee JM, Sharma V (2014) Characterization of a brain permeant fluorescent molecule and visualization of Abeta parenchymal plaques, using real-time multiphoton imaging in transgenic mice. Org Lett 16(14):3640–3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang X, Tian Y, Zhang C, Tian X, Ross AW, Moir RD, Sun H, Tanzi RE, Moore A, Ran C (2015) Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease. Proc Natl Acad Sci U S A 112(31):9734–9739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kikuchi K (2010) Design, synthesis and biological application of chemical probes for bio-imaging. Chem Soc Rev 39(6):2048–2053

    Article  CAS  PubMed  Google Scholar 

  31. Almutairi A, Akers WJ, Berezin MY, Achilefu S, Frechet JM (2008) Monitoring the biodegradation of dendritic near-infrared nanoprobes by in vivo fluorescence imaging. Mol Pharm 5(6):1103–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. National Research Council (U.S.). Committee for the Update of the Guide for the Care and Use of Laboratory Animals., Institute for Laboratory Animal Research (U.S.), National Academies Press (U.S.) (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies Press, Washington, D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Akers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Peng, O., Akers, W.J. (2016). Fluorescence Lifetime Imaging of Cancer In Vivo. In: Bai, M. (eds) In Vivo Fluorescence Imaging. Methods in Molecular Biology, vol 1444. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3721-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3721-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3719-6

  • Online ISBN: 978-1-4939-3721-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics