Skip to main content

Classical Radioligand Uptake and Binding Methods in Transporter Research: An Emphasis on the Monoamine Neurotransmitter Transporters

  • Protocol
  • First Online:
Neurotransmitter Transporters

Part of the book series: Neuromethods ((NM,volume 118))

Abstract

Radioligand uptake and binding assays denote an invaluable tool in the field of neurotransmitter transporter research. Their benefits have been evident since the late 1950s, and they continue to contribute major insights into transporter function and structure to date. In the current chapter, we focus primarily on the family of monoamine (MA) neurotransmitter transporters (MATs), i.e., transporters (T) for norepinephrine [noradrenaline] (NET), dopamine (DAT), and serotonin [5-hydroxy tryptamine, 5-HT] (SERT), dysfunction of which has been linked to numerous neuropsychiatric disorders and substance abuse. Radiotracer assays have provided a major way of elucidating the mechanisms of action of not only endogenous substrates (e.g., NE, SER, and DA), but also many diverse substances such as antidepressants (e.g., imipramine and citalopram), psychostimulants (e.g., amphetamine and cocaine), toxins (e.g., conotoxins), or neurotoxins (e.g., 1-methyl-4-phenylpyridinium, MPP+) that exert their action on MATs. In this chapter we describe the basic principles and experimental procedures of radiotracer assays commonly used in the studies of MATs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Von Euler US (1946) The presence of a sympathomimetic substance in extracts of mammalian heart. J Physiol 105:38–44

    Article  Google Scholar 

  2. Axelrod J, Weil-Malherbe H, Tomchick R (1959) The physiological disposition of H3-epinephrine and its metabolite metanephrine. J Pharmacol Exp Ther 127:251–256

    CAS  PubMed  Google Scholar 

  3. Whitby LG, Hertting G, Axelrod J (1960) Effect of cocaine on the disposition of noradrenaline labelled with tritium. Nature 187:604–605

    Article  CAS  PubMed  Google Scholar 

  4. Herting G, Axelrod J, Whitby LG (1961) Effect of drugs on the uptake and metabolism of H3-norepinephrine. J Pharmacol Exp Ther 134:146–153

    CAS  PubMed  Google Scholar 

  5. Dengler HJ, Spiegel HE, Titus EO (1961) Uptake of tritium-labeled norepinephrine in brain and other tissues of cat in vitro. Science 133(3458):1072–1073

    Article  CAS  PubMed  Google Scholar 

  6. Dengler HJ, Michaelson IA, Spiegel HE, Titus E (1962) The uptake of labelled norepinephrine by isolated brain and other tissues of the cat. Int J Neuropharmacol 1:23–38

    Article  CAS  Google Scholar 

  7. Iversen LL (1963) The uptake of norepinephrine by the isolated perfused rat heart. Br J Pharmacol 21:523–537

    CAS  Google Scholar 

  8. Iversen LL (1967) The uptake and storage of noradrenaline in sympathetic nerves. Cambridge University Press, Cambridge, UK

    Google Scholar 

  9. Langeloh A, Bönisch H, Trendelenburg U (1987) The mechanism of the 3H-noradrenaline releasing effect of various substrates of uptake1: multifactorial induction of outward transport. Naunyn Schmiedebergs Arch Pharmacol 336:602–610

    Article  CAS  PubMed  Google Scholar 

  10. Bönisch H (1984) The transport of (+)-amphetamine by the neuronal noradrenaline carrier. Naunyn Schmiedebergs Arch Pharmacol 327:267–272

    Article  PubMed  Google Scholar 

  11. Bönisch H, Brüss M (2006) The norepinephrine transporter in physiology and disease. Handb Exp Pharmacol 175:485–524

    Article  PubMed  Google Scholar 

  12. Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350(6316):350–354

    Article  CAS  PubMed  Google Scholar 

  13. Raisman R, Briley MS, Langer SZ (1980) Specific tricyclic antidepressant binding sites in rat brain characterised by high-affinity 3H-imipramine binding. Eur J Pharmacol 61:373–380

    Article  CAS  PubMed  Google Scholar 

  14. Pramod AB, Foster Carvelli JL, Henry LK (2013) SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol Aspects Med 34:197–219

    Article  CAS  PubMed  Google Scholar 

  15. Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503(7474):85–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang KH, Penmatsa A, Gouaux E (2015) Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521(7552):322–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rudnick G, Krämer R, Blakely RD, Murphy DL, Verrey F (2014) The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction. Pflugers Arch 466:25–42

    Article  CAS  PubMed  Google Scholar 

  18. Trendelenburg U (1990) Carrier-mediated outward transport of noradrenaline from adrenergic varicosities. Pol J Pharmacol Pharm 42:515–520

    Article  CAS  PubMed  Google Scholar 

  19. Cheng Y, Prusoff W (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  20. Bönisch H, Harder R (1986) Binding of 3H-desipramine to the neuronal noradrenaline carrier of rat phaeochromocytoma cells (PC-12 cells). Naunyn Schmiedebergs Arch Pharmacol 334:403–411

    Article  PubMed  Google Scholar 

  21. Schömig E, Bönisch H (1986) Solubilization and characterization of the 3H-desipramine binding site of rat phaeochromocytoma cells (PC12-cells). Naunyn Schmiedebergs Arch Pharmacol 334:412–417

    Article  PubMed  Google Scholar 

  22. Bönisch H (1998) Transport and drug binding kinetics in membrane vesicle preparations. In: Amara S (ed). Neurotransmitter transporters. Methods Enzymol 296:259–278

    Google Scholar 

  23. Eshleman AJ, Stewart E, Evenson AK, Mason JN, Blakely RD, Janowsky A, Neve KA (1997) Metabolism of catecholamines by catechol-O-methyltransferase in cells expressing recombinant catecholamine transporters. J Neurochem 69:1459–1466

    Article  CAS  PubMed  Google Scholar 

  24. Bönisch H, Rodrigues-Pereira E (1983) Uptake of 14C-tyramine and release of extravesicular 3H-noradrenaline in isolated perfused rabbit hearts. Naunyn Schmiedebergs Arch Pharmacol 323:233–244

    Article  PubMed  Google Scholar 

  25. Wenge B, Bönisch H (2013) The role of cysteines and histidins of the norepinephrine transporter. Neurochem Res 38:1303–1314

    Article  CAS  PubMed  Google Scholar 

  26. Yamamura HI, Enna SJ, Kuhar MJ (1978) Neurotransmitter receptor binding. Raven Press, New York

    Google Scholar 

  27. Williams LT, Lefkowitz RJ (1978) Receptor binding studies in adrenergic pharmacology. Raven Press, New York

    Google Scholar 

  28. Reith MEA (1997) Neurotransmitter transporters (ed.). Structure, function, and regulation. Humana, Totowa, NJ

    Google Scholar 

  29. Amara SG (1998) Neurotransmitter transporters (ed). Methods Enzymol 296:307-318

    Google Scholar 

  30. Janowsky A, Neve K, Eshleman AJ (2001) Uptake and release of neurotransmitters. Curr Protoc Neurosci Chapter 7:Unit 7.9

    Google Scholar 

  31. Motulsky HJ, Christopoulos A (2003) Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. GraphPad Sostware Inc., San Diego, CA, www.graphpad.com

  32. Sitte HH, Freissmuth M (2006) Neurotransmitter transporters (eds). Handb Exp Pharmacol, vol 175. Springer, Berlin

    Google Scholar 

  33. Iversen LL (1965) The inhibition of noradrenaline uptake by drugs. Adv Drug Res 2:1–46

    CAS  PubMed  Google Scholar 

  34. Iversen LL (1965) The uptake of adrenaline by the rat isolated heart. Br J Pharmacol 24:387–394

    CAS  Google Scholar 

  35. Burgen ASV, Iversen LL (1965) The inhibition of noradrenaline uptake by sympathomimetic amines in the rat isolated heart. Br J Pharmacol 25:34–49

    CAS  Google Scholar 

  36. Born GV, Gillson RE (1959) Studies on the uptake of 5-hydroxytryptamine by blood platelets. J Physiol 146(3):472–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pifl C, Giros B, Caron MG (1993) Dopamine transporter expression confers cytotoxicity to low doses of the Parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium. J Neurosci 13:4246–4253

    CAS  PubMed  Google Scholar 

  38. Callingham BA (1967) The effects of imipramine and related compounds on the uptake of noradrenaline into sympathetic nerve endings. In: Garattini S, Dukes MNG (eds) Excerpta medica international congress series 122. Excerpta Medica Foundation, Amsterdam, pp 35–43

    Google Scholar 

  39. Maxwell RA, Ferris RM, Burcsu J, Chaplin Woodward E, Tang D, Williard K (1974) The phenyl rings of tricyclic antidepressants and related compounds as determinants of the potency of inhibition of the amine pumps in adrenergic neurons of the rabbit aorta and in rat cortical synaptosomes. J Pharmacol Exp Ther 191:418–430

    CAS  PubMed  Google Scholar 

  40. Koe BK (1976) Molecular geometry of inhibitors of the uptake of catecholamines and serotonin in synaptosomal preparations of rat brain. J Pharmacol Exp Ther 199:649–661

    CAS  PubMed  Google Scholar 

  41. Richelson E, Pfenning M (1984) Blockade by antidepressants and related compounds of biogenic amine uptake into rat brain synaptosomes: most antidepressants selectively block norepinephrine uptake. Eur J Pharmacol 104:277–286

    Article  CAS  PubMed  Google Scholar 

  42. Segel IH (1975) Enzyme kinetics. Behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York

    Google Scholar 

  43. Harder R, Bönisch H (1985) Effects of monovalent ions on the transport of noradrenaline across the plasma membrane of neuronal cells (PC-12 cells). J Neurochem 45:1154–1162

    Article  CAS  PubMed  Google Scholar 

  44. Schömig E, Korber M, Bönisch H (1988) Kinetic evidence for a common binding site for substrates and inhibitors of the neuronal noradrenaline carrier. Naunyn Schmiedebergs Arch Pharmacol 337:626–632

    PubMed  Google Scholar 

  45. Ramamoorthy S, Ramamoorthy JD, Prasad PD, Bhat GK, Mahesh VB, Leibach FH, Ganapathy V (1995) Regulation of the human serotonin transporter by interleukin-1 beta. Biochem Biophys Res Commun 216(2):560–567

    Article  CAS  PubMed  Google Scholar 

  46. Kong E, Sucic S, Monje FJ, Savalli G, Diao W, Khan D, Ronovsky M, Cabatic M, Koban F, Freissmuth M, Pollak DD (2015) STAT3 controls IL6-dependent regulation of serotonin transporter function and depression-like behavior. Sci Rep 5:9009

    Article  PubMed  Google Scholar 

  47. Cool DR, Leibach FH, Bhalla VK, Mahesh VB, Ganapathy V (1991) Expression and cyclic AMP-dependent regulation of a high affinity serotonin transporter in the human placental choriocarcinoma cell line (JAR). J Biol Chem 266(24):15750–15757

    CAS  PubMed  Google Scholar 

  48. Qian Y, Galli A, Ramamoorthy S, Risso S, DeFelice LJ, Blakely RD (1997) Protein kinase C activation regulates human serotonin transporters in HEK293 cells via altered cell surface expression. J Neurosci 17(1):45–57

    CAS  PubMed  Google Scholar 

  49. Apparsundaram S, Galli A, DeFelice LJ, Hartzell HC, Blakely RD (1998) Acute regulation of norepinephrine transport: I. Protein kinase C-linked muscarinic receptors influence transport capacity and transporter density in SK-N-SH cells. J Pharmacol Exp Ther 287:733–743

    CAS  PubMed  Google Scholar 

  50. Sucic S, Bryan-Lluka LJ (2002) The role of the conserved GXXXRXG motif in the expression and function of the human norepinephrine transporter. Brain Res Mol Brain Res 108:40–50

    Article  CAS  PubMed  Google Scholar 

  51. Sucic S, Packowski FA, Runkel F, Bönisch H, Bryan-Lluka LJ (2002) Functional significance of a highly conserved glutamate residue of the human noradrenaline transporter. J Neurochem 81:344–354

    Article  CAS  PubMed  Google Scholar 

  52. Paczkowski FA, Bryan-Lluka LJ (2001) Tyrosine residue 271 of the norepinephrine transporter is an important determinant of its pharmacology. Brain Res Mol Brain Res 97:32–42

    Article  CAS  PubMed  Google Scholar 

  53. Paczkowski FA, Bönisch H, Bryan-Lluka LJ (2002) Pharmacological properties of the naturally occurring Ala457Pro variant of the human norepinephrine transporter. Pharmacogenetics 12:165–173

    Article  CAS  PubMed  Google Scholar 

  54. Giros B, Wang Y-M, Suter S, McLeskey SB, Pifl C, Caron MG (1994) Delineation of discrete domains for substrate, cocaine, and tricyclic antidepressant interactions using chimeric dopamine-norepinephrine transporters. J Biol Chem 269:15985–15988

    CAS  PubMed  Google Scholar 

  55. Buck KJ, Amara SG (1994) Chimeric dopamine-norepinephrine transporters delineate structural domains influencing selectivity for catecholamines and 1-methyl-4-phenylpyridinium. Proc Natl Acad Sci U S A 91:12584–12588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Buck KJ, Amara SG (1995) Structural domains of catecholamine transporter chimeras involved in selective inhibition by antidepressants and psychomotor stimulants. Mol Pharmacol 48:1030–1037

    CAS  PubMed  Google Scholar 

  57. Kitayama S, Shimada S, Xu H, Markham L, Donovan DM, Uhl GR (1992) Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc Natl Acad Sci U S A 89:7782–7785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Barker EL, Blakely RD (1996) Identification of a single amino acid, phenylalanine 586, that is responsible for high affinity interactions of tricyclic antidepressants with the human serotonin transporter. Mol Pharmacol 50:957–965

    CAS  PubMed  Google Scholar 

  59. Surratt CK, Ukairo OT, Ramanujapuram S (2005) Recognition of psychostimulants, antidepressants, and other inhibitors of synaptic neurotransmitter uptake by the plasma membrane monoamine transporters. AAPS J 7:E739–E751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stöber G, Nöthen MM, Pörzgen P, Brüss M, Bönisch H, Knapp M, Beckmann H, Propping P (1996) Systematic search for variation in the human norepinephrine transporter gene: identification of five naturally occurring missense mutations and study of association with major psychiatric disorders. Am J Med Genet 67:523–532

    Article  PubMed  Google Scholar 

  61. Stöber G, Hebebrand J, Cichon S, Brüss M, Bönisch H, Lehmkuhl G, Poustka F, Schmidt M, Remschmidt H, Propping P, Nöthen MM (1999) Tourette syndrome and the norepinephrine transporter gene: results of a systematic mutation screening. Am J Med Genet 88:158–163

    Article  PubMed  Google Scholar 

  62. Shannon JR, Flattem NL, Jordan J, Jacob G, Black BK, Biaggioni I, Blakely RD, Robertson D (2000) Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency. N Engl J Med 342:541–549

    Article  CAS  PubMed  Google Scholar 

  63. Rodríguez GJ, Roman DL, White KJ, Nichols DE, Barker EL (2003) Distinct recognition of substrates by the human and Drosophila serotonin transporters. J Pharmacol Exp Ther 306(1):338–346

    Article  PubMed  Google Scholar 

  64. Han DD, Gu HH (2006) Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol 6:6

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sarker S, Weissensteiner R, Steiner I, Sitte HH, Ecker GF, Freissmuth M, Sucic S (2010) The high-affinity binding site for tricyclic antidepressants resides in the outer vestibule of the serotonin transporter. Mol Pharmacol 78:1026–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sucic S, Dallinger S, Zdrazil B, Weissensteiner R, Jorgensen TN, Holy M, Kudlacek O, Seidel S, Cha JH, Gether U, Newman AH, Ecker GF, Freissmuth M, Sitte HH (2010) The amino terminus of monoamine transporters is a lever required for the action of amphetamines. J Biol Chem 285:10924–10938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kitayama S, Mitsuhata C, Davis S, Wang J-B, Sato T, Morita K, Uhl GR, Dohi T (1998) MPP+ toxicity and plasma membrane dopamine transporter: study using cell lines expressing the wild-type and mutant rat dopamine transporters. Biochim Biophys Acta 1404:305–313

    Article  CAS  PubMed  Google Scholar 

  68. Guptaroy B, Fraser R, Desai A, Zhang M, Gnegy ME (2001) Site-directed mutations near transmembrane domain 1 alter conformation and function of norepinephrine and dopamine transporters. Mol Pharmacol 79(3):520–532

    Article  Google Scholar 

  69. Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340:249–258

    Article  CAS  PubMed  Google Scholar 

  70. Lynagh T, Khamu TS, Bryan-Lluka LJ (2014) Extracellular loop 3 of the noradrenaline transporter contributes to substrate and inhibitor selectivity. Naunyn Schmiedebergs Arch Pharmacol 387:95–107

    Article  CAS  PubMed  Google Scholar 

  71. Scholze P, Nørregaard L, Singer EA, Freissmuth M, Gether U, Sitte HH (2002) The role of zinc ions in reverse transport mediated by monoamine transporters. J Biol Chem 277(24):21505–21513

    Article  CAS  PubMed  Google Scholar 

  72. Karlin A, Akabas MH (1998) Substituted-cysteine accessibility method. Methods Enzymol 293:123–145

    Article  CAS  PubMed  Google Scholar 

  73. Javitch JA (1998) Probing structure of neurotransmitter transporters by substituted cysteine accessibility methods. Methods Enzymol 296:331–346

    Article  CAS  PubMed  Google Scholar 

  74. Ferrer JV, Javitch JA (1998) Cocaine alters the accessibility of endogenous cysteines in putative extracellular and intracellular loops of the human dopamine transporter. Proc Natl Acad Sci U S A 95:9238–9243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen J-G, Rudnick G (2000) Permeation and gating residues in serotonin transporter. Proc Natl Acad Sci U S A 97:1044–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sucic S, Bryan-Lluka LJ (2005) Roles of transmembrane domain 2 and the first intracellular loop in human noradrenaline transporter function: pharmacological and SCAM analysis. J Neurochem 94(6):1620–1630

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Sucic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sucic, S., Bönisch, H. (2016). Classical Radioligand Uptake and Binding Methods in Transporter Research: An Emphasis on the Monoamine Neurotransmitter Transporters. In: Bönisch, H., Sitte, H. (eds) Neurotransmitter Transporters. Neuromethods, vol 118. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3765-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3765-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3763-9

  • Online ISBN: 978-1-4939-3765-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics