Skip to main content

Modeling Leukemogenesis in the Zebrafish Using Genetic and Xenograft Models

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1451))

Abstract

The zebrafish is a widely accepted model to study leukemia. The major advantage of studying leukemogenesis in zebrafish is attributed to its short life cycle and superior imaging capacity. This chapter highlights using transgenic- and xenograft-based models in zebrafish to study a specific leukemogenic mutation and analyze therapeutic responses in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8(Suppl 1):S7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thermes V, Grabher C, Ristoratore F, Bourrat F, Choulika A, Wittbrodt J, Joly J-S (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 118(1–2):91–98, doi:http://dx.doi.org/10.1016/S0925-4773(02)00218-6

    Article  CAS  PubMed  Google Scholar 

  3. Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, Berghmans S, Mayhall EA, Traver D, Fletcher CDM, Aster JC, Granter SR, Look AT, Lee C, Fisher DE, Zon LI (2005) BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15(3):249–254, doi:http://dx.doi.org/10.1016/j.cub.2005.01.031

    Article  CAS  PubMed  Google Scholar 

  4. Dovey M, White RM, Zon LI (2009) Oncogenic NRAS cooperates with p53 loss to generate melanoma in zebrafish. Zebrafish 6(4):397–404. doi:10.1089/zeb.2009.0606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen J, Jette C, Kanki JP, Aster JC, Look AT, Griffin JD (2007) NOTCH1-induced T-cell leukemia in transgenic zebrafish. Leukemia 21(3):462–471, doi:http://www.nature.com/leu/journal/v21/n3/suppinfo/2404546s1.html

    Article  PubMed  Google Scholar 

  6. Onnebo SMN, Rasighaemi P, Kumar J, Liongue C, Ward AC (2012) Alternative TEL-JAK2 fusions associated with T-cell acute lymphoblastic leukemia and atypical chronic myelogenous leukemia dissected in zebrafish. Haematologica 97(12):1895–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP, Lin S, Prochownik E, Trede NS, Zon LI, Look AT (2003) Myc-induced T cell leukemia in transgenic zebrafish. Science 299(5608):887–890. doi:10.1126/science.1080280

    Article  CAS  PubMed  Google Scholar 

  8. Gutierrez A, Grebliunaite R, Feng H, Kozakewich E, Zhu S, Guo F, Payne E, Mansour M, Dahlberg SE, Neuberg DS, Jd H, Prochownik EV, Testa JR, Harris M, Kanki JP, Look AT (2011) Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia. J Exp Med 208(8):1595–1603. doi:10.1084/jem.20101691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sabaawy HE, Azuma M, Embree LJ, Tsai H-J, Starost MF, Hickstein DD (2006) TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci 103(41):15166–15171. doi:10.1073/pnas.0603349103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Forrester AM, Grabher C, McBride ER, Boyd ER, Vigerstad MH, Edgar A, Kai F-B, Da’as SI, Payne E, Look AT, Berman JN (2011) NUP98-HOXA9-transgenic zebrafish develop a myeloproliferative neoplasm and provide new insight into mechanisms of myeloid leukaemogenesis. Br J Haematol 155(2):167–181. doi:10.1111/j.1365-2141.2011.08810.x

    Article  PubMed  Google Scholar 

  11. Storer NY, White RM, Uong A, Price E, Nielsen GP, Langenau DM, Zon LI (2013) Zebrafish rhabdomyosarcoma reflects the developmental stage of oncogene expression during myogenesis. Development 140(14):3040–3050. doi:10.1242/dev.087858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Park SW, Davison JM, Rhee J, Hruban RH, Maitra A, Leach SD (2008) Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas. Gastroenterology 134(7):2080–2090. doi:10.1053/j.gastro.2008.02.084

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nguyen AT, Emelyanov A, Koh CHV, Spitsbergen JM, Parinov S, Gong Z (2012) An inducible krasV12 transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Dis Model Mech 5(1):63–72. doi:10.1242/dmm.008367

    Article  CAS  PubMed  Google Scholar 

  14. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26(2):99–109. doi:10.1002/(SICI)1526-968X(200002)26:2<99::AID-GENE1>3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  15. Thummel R, Burket CT, Brewer JL, Sarras MP, Li L, Perry M, McDermott JP, Sauer B, Hyde DR, Godwin AR (2005) Cre-mediated site-specific recombination in zebrafish embryos. Dev Dyn 233(4):1366–1377. doi:10.1002/dvdy.20475

    Article  CAS  PubMed  Google Scholar 

  16. Hans S, Kaslin J, Freudenreich D, Brand M (2009) Temporally-controlled site-specific recombination in zebrafish. PLoS One 4(2):e4640. doi:10.1371/journal.pone.0004640

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hans S, Freudenreich D, Geffarth M, Kaslin J, Machate A, Brand M (2011) Generation of a non-leaky heat shock–inducible Cre line for conditional Cre/lox strategies in zebrafish. Dev Dyn 240(1):108–115. doi:10.1002/dvdy.22497

    Article  CAS  PubMed  Google Scholar 

  18. Campbell LJ, Willoughby JJ, Jensen AM (2012) Two types of tet-on transgenic lines for doxycycline-inducible gene expression in zebrafish rod photoreceptors and a gateway-based tet-on toolkit. PLoS One 7(12):e51270. doi:10.1371/journal.pone.0051270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Halpern ME, Rhee J, Goll MG, Akitake CM, Parsons M, Leach SD (2008) Gal4/UAS transgenic tools and their application to zebrafish. Zebrafish 5(2):97–110. doi:10.1089/zeb.2008.0530

    Article  CAS  PubMed  Google Scholar 

  20. Gjini E, Mansour MR, Sander JD, Moritz N, Nguyen AT, Kesarsing M, Gans E, He S, Chen S, Ko M, Kuang Y-Y, Yang S, Zhou Y, Rodig S, Zon LI, Joung JK, Rao A, Look AT (2014) A zebrafish model of myelodysplastic syndrome produced through tet2 genomic editing. Mol Cell Biol. doi:10.1128/mcb.00971-14

    PubMed  PubMed Central  Google Scholar 

  21. Prykhozhij S, Rajan V, Gaston D, Berman JN (2015) CRISPR MultiTargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10(3):e0119372

    Article  PubMed  PubMed Central  Google Scholar 

  22. Auer TO, Del Bene F (2014) CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 69(2):142–150, doi:http://dx.doi.org/10.1016/j.ymeth.2014.03.027

    Article  CAS  PubMed  Google Scholar 

  23. Haldi M, Ton C, Seng W, McGrath P (2006) Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9(3):139–151. doi:10.1007/s10456-006-9040-2

    Article  PubMed  Google Scholar 

  24. Corkery DP, Dellaire G, Berman JN (2011) Leukaemia xenotransplantation in zebrafish – chemotherapy response assay in vivo. Br J Haematol 153(6):786–789. doi:10.1111/j.1365-2141.2011.08661.x

    Article  CAS  PubMed  Google Scholar 

  25. Bentley VL, Veinotte CJ, Corkery DP, Pinder JB, LeBlanc MA, Bedard K, Weng AP, Berman JN, Dellaire G (2014) Focused chemical genomics using zebrafish xenotransplantation as a preclinical therapeutic platform for T-cell acute lymphoblastic leukemia. Haematologica. doi:10.3324/haematol.2014.110742

    PubMed  PubMed Central  Google Scholar 

  26. Pruvot B, Jacquel A, Droin N, Auberger P, Bouscary D, Tamburini J, Muller M, Fontenay M, Chluba J, Solary E (2011) Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica 96:612–616. doi:10.3324/haematol.2010.031401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vlecken DH, Bagowski CP (2009) LIMK1 and LIMK2 are important for metastatic behavior and tumor cell-induced angiogenesis of pancreatic cancer cells. Zebrafish 6(4):433–439. doi:10.1089/zeb.2009.0602

    Article  CAS  PubMed  Google Scholar 

  28. Nicoli S, Ribatti D, Cotelli F, Presta M (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67(7):2927–2931. doi:10.1158/0008-5472.can-06-4268

    Article  CAS  PubMed  Google Scholar 

  29. Geiger GA, Fu W, Kao GD (2008) Temozolomide-mediated radiosensitization of human glioma cells in a zebrafish embryonic system. Cancer Res 68(9):3396–3404. doi:10.1158/0008-5472.can-07-6396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marques I, Weiss F, Vlecken D, Nitsche C, Bakkers J, Lagendijk A, Partecke L, Heidecke C-D, Lerch M, Bagowski C (2009) Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 9(1):128

    Article  PubMed  PubMed Central  Google Scholar 

  31. White R, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns C (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Veinotte CJ, Dellaire G, Berman JN (2014) Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Dis Model Mech 7(7):745–754. doi:10.1242/dmm.015784

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu Y, Asnani A, Zou L, Bentley VL, Yu M, Wang Y, Dellaire G, Sarkar KS, Dai M, Chen HH, Sosnovik DE, Shin JT, Haber DA, Berman JN, Chao W, Peterson RT (2014) Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Sci Transl Med 6(266):266ra170. doi:10.1126/scitranslmed.3010189

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yeh J-RJ, Munson KM, Chao YL, Peterson QP, MacRae CA, Peterson RT (2008) AML1-ETO reprograms hematopoietic cell fate by downregulating scl expression. Development 135(2):401–410. doi:10.1242/dev.008904

    Article  CAS  PubMed  Google Scholar 

  35. Grabher C, Joly J-S, Wittbrodt J (2004) Highly efficient zebrafish transgenesis mediated by the meganuclease I-SceI. In: William Detrich H III, Westerfield M, Leonard IZ (eds) Methods in cell biology, vol 77. Academic, New York, pp 381–401, doi:http://dx.doi.org/10.1016/S0091-679X(04)77021-1

    Google Scholar 

  36. Langenau DM, Jette C, Berghmans S, Palomero T, Kanki JP, Kutok JL, Look AT (2005) Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish. Blood 105(8):3278–3285. doi:10.1182/blood-2004-08-3073

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge members of Berman and Dellaire lab especially Dale Corkery, Chansey Veinotte, Sergey Prykhozhij, Nicole Melong, Babak Razaghi, Jaime Wertman, and Victoria Bentley for the critical review. Vinothkumar Rajan is funded through Cancer Research Trainee Program of the Beatrice Hunter Cancer Institute, Nova Scotia in partnership with the Canadian Imperial bank of Commerce and New Brunswick Health Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason N. Berman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rajan, V., Dellaire, G., Berman, J.N. (2016). Modeling Leukemogenesis in the Zebrafish Using Genetic and Xenograft Models. In: Kawakami, K., Patton, E., Orger, M. (eds) Zebrafish. Methods in Molecular Biology, vol 1451. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3771-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3771-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3769-1

  • Online ISBN: 978-1-4939-3771-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics