Skip to main content

Critical Role of GRK2 in the Prevention of Chronic Pain

  • Protocol
  • First Online:
G Protein-Coupled Receptor Kinases

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 799 Accesses

Abstract

Chronic pain is an incapacitating condition that arises from diverse origins, including inflammatory disorders, nerve damage, chemotherapy, and diabetes, implicating numerous signaling mechanisms. The pain response involves multiple cell types including neurons, microglia, and astrocytes. Recently our group and others have elucidated a crucial role for G protein coupled receptor kinase 2 (GRK2) in the development and maintenance of chronic pain using mice with global and cell specific deletion of GRK2 in vivo. The studies summarized here indicate that GRK2 controls multiple pathways in order to regulate severity and duration of pain in a cell-specific manner. For instance, reduced GRK2 in nociceptive neurons leads to increased G protein coupled receptor signaling and increased pain in response to a chemokine. Low GRK2 in nociceptors leads to transition to chronic pain by promoting biased cAMP signaling to Epac/PKCĪµ/ERK- mediated pathway. Via mechanisms that remain to be elucidated, low monocyte GRK2 leads to IL-10 deficiency and prolonged inflammatory pain. The clinical relevance of these findings is discussed in the light of the observed decrease of GRK2 in nociceptors, glia and leukocytes in response to nerve injury in rodents and in patients and rodents with inflammatory conditions such as arthritis or multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-Bnz-cAMP:

N6-Benzoyladenosine cAMP

8-Br-cAMP:

8-Bromoadenosine cAMP

8-pCPT:

8-(4-Chlorophenylthio)-2ā€²-O-methyladenosine cAMP

asODN:

Antisense oligodeoxynucleotide

cAMP:

Cyclic adenosine monophosphate

CCL2/3:

Chemokine (C-C motif) ligand 2/3

CCR1/5:

CC-chemokine receptor 1/5

cdk1:

Cyclin-dependent kinase 1

CFA:

Complete Freundā€™s adjuvant

DRG:

Dorsal root ganglion

Epac:

Exchange protein directly activated by cAMP

EPI:

Epinephrine

ERK:

Extracellular signal-regulated kinase

GDNF:

Glial cell-derived neurotrophic factor

GLAST:

Glutamate aspartate transporter

GPCR:

G-protein-coupled receptor

GRK:

G-protein-coupled receptor kinase

HI:

Hypoxicā€“ischemic

IFNĪ³:

Interferon Ī³

IL-1R:

Interleukin 1 receptor

IL-1Ī²:

Interleukin-1Ī²

LPS:

Lipopolysaccharide

LysM:

Lysozyme M

MAPK:

Mitogen-activated protein kinase

miRNA:

MicroRNA

MS:

Multiple sclerosis

mTOR:

Mechanistic target of rapamycin

NGF:

Nerve growth factor

PBMC:

Peripheral blood mononuclear cells

PGE2:

Prostaglandin E2

PKA/C:

Protein kinase A or C

RA:

Rheumatoid arthritis

ROS:

Reactive oxygen species

SNS:

Small sensory neuron

TAM:

Tamoxifen

TNFĪ±:

Tumor necrosis factor Ī±

TRPV1:

Transient receptor potential cation channel V1

WT:

Wild type

Ī±/Ī²AR:

Ī± or Ī² adrenergic receptor

ĪØRACK:

PKCĪµ activator

References

  1. Winstel R, Freund S, Krasel C, Hoppe E, Lohse MJ (1996) Protein kinase cross-talk: membrane targeting of the beta-adrenergic receptor kinase by protein kinase C. Proc Natl Acad Sci U S A 93(5):2105ā€“2109

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Salcedo A, Mayor F Jr, Penela P (2006) Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2. EMBO J 25(20):4752ā€“4762

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Liu S, Premont RT, Kontos CD, Zhu S, Rockey DC (2005) A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nat Med 11(9):952ā€“958

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Naga Prasad SV, Laporte SA, Chamberlain D, Caron MG, Barak L, Rockman HA (2002) Phosphoinositide 3-kinase regulates beta2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/beta-arrestin complex. J Cell Biol 158(3):563ā€“575

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  5. Peregrin S, Jurado-Pueyo M, Campos PM, Sanz-Moreno V, Ruiz-Gomez A, Crespo P, Mayor F Jr, Murga C (2006) Phosphorylation of p38 by GRK2 at the docking groove unveils a novel mechanism for inactivating p38MAPK. Curr Biol 16(20):2042ā€“2047

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Penela P, Ribas C, Aymerich I, Eijkelkamp N, Barreiro O, Heijnen CJ, Kavelaars A, Sanchez-Madrid F, Mayor F Jr (2008) G protein-coupled receptor kinase 2 positively regulates epithelial cell migration. EMBO J 27(8):1206ā€“1218

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Cant SH, Pitcher JA (2005) G protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton. Mol Biol Cell 16(7):3088ā€“3099

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Carman CV, Som T, Kim CM, Benovic JL (1998) Binding and phosphorylation of tubulin by G protein-coupled receptor kinases. J Biol Chem 273(32):20308ā€“20316

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Pitcher JA, Hall RA, Daaka Y, Zhang J, Ferguson SS, Hester S, Miller S, Caron MG, Lefkowitz RJ, Barak LS (1998) The G protein-coupled receptor kinase 2 is a microtubule-associated protein kinase that phosphorylates tubulin. J Biol Chem 273(20):12316ā€“12324

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Freeman JL, Pitcher JA, Li X, Bennett V, Lefkowitz RJ (2000) alpha-Actinin is a potent regulator of G protein-coupled receptor kinase activity and substrate specificity in vitro. FEBS Lett 473(3):280ā€“284

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Yi XP, Gerdes AM, Li F (2002) Myocyte redistribution of GRK2 and GRK5 in hypertensive, heart-failure-prone rats. Hypertension 39(6):1058ā€“1063

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87(2):454ā€“463

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Iaccarino G, Keys JR, Rapacciuolo A, Shotwell KF, Lefkowitz RJ, Rockman HA, Koch WJ (2001) Regulation of myocardial betaARK1 expression in catecholamine-induced cardiac hypertrophy in transgenic mice overexpressing alpha1B-adrenergic receptors. J Am Coll Cardiol 38(2):534ā€“540

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Gros R, Chorazyczewski J, Meek MD, Benovic JL, Ferguson SS, Feldman RD (2000) G-Protein-coupled receptor kinase activity in hypertension : increased vascular and lymphocyte G-protein receptor kinase-2 protein expression. Hypertension 35(1 Pt 1):38ā€“42

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Martini JS, Raake P, Vinge LE, DeGeorge BR Jr, Chuprun JK, Harris DM, Gao E, Eckhart AD, Pitcher JA, Koch WJ (2008) Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc Natl Acad Sci U S A 105(34):12457ā€“12462

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Kaur G, Kim J, Kaur R, Tan I, Bloch O, Sun MZ, Safaee M, Oh MC, Sughrue M, Phillips J, Parsa AT (2013) G-protein coupled receptor kinase (GRK)-5 regulates proliferation of glioblastoma-derived stem cells. J Clin Neurosci 20(7):1014ā€“1018

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Metaye T, Menet E, Guilhot J, Kraimps JL (2002) Expression and activity of g protein-coupled receptor kinases in differentiated thyroid carcinoma. J Clin Endocrinol Metab 87(7):3279ā€“3286

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Nakaya M, Tajima M, Kosako H, Nakaya T, Hashimoto A, Watari K, Nishihara H, Ohba M, Komiya S, Tani N, Nishida M, Taniguchi H, Sato Y, Matsumoto M, Tsuda M, Kuroda M, Inoue K, Kurose H (2013) GRK6 deficiency in mice causes autoimmune disease due to impaired apoptotic cell clearance. Nat Commun 4:1532

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  19. Vroon A, Kavelaars A, Limmroth V, Lombardi MS, Goebel MU, Van Dam AM, Caron MG, Schedlowski M, Heijnen CJ (2005) G protein-coupled receptor kinase 2 in multiple sclerosis and experimental autoimmune encephalomyelitis. J Immunol 174(7):4400ā€“4406

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Lombardi MS, Kavelaars A, Schedlowski M, Bijlsma JW, Okihara KL, Van de Pol M, Ochsmann S, Pawlak C, Schmidt RE, Heijnen CJ (1999) Decreased expression and activity of G-protein-coupled receptor kinases in peripheral blood mononuclear cells of patients with rheumatoid arthritis. FASEB J 13(6):715ā€“725

    CASĀ  PubMedĀ  Google ScholarĀ 

  21. Mak JC, Chuang TT, Harris CA, Barnes PJ (2002) Increased expression of G protein-coupled receptor kinases in cystic fibrosis lung. Eur J Pharmacol 436(3):165ā€“172

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Gainetdinov RR, Bohn LM, Sotnikova TD, Cyr M, Laakso A, Macrae AD, Torres GE, Kim KM, Lefkowitz RJ, Caron MG, Premont RT (2003) Dopaminergic supersensitivity in G protein-coupled receptor kinase 6-deficient mice. Neuron 38(2):291ā€“303

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Ferrer-Alcon M, La Harpe R, Garcia-Sevilla JA (2004) Decreased immunodensities of micro-opioid receptors, receptor kinases GRK 2/6 and beta-arrestin-2 in postmortem brains of opiate addicts. Brain Res Mol Brain Res 121(1ā€“2):114ā€“122

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Garcia-Guerra L, Nieto-Vazquez I, Vila-Bedmar R, Jurado-Pueyo M, Zalba G, Diez J, Murga C, Fernandez-Veledo S, Mayor F Jr, Lorenzo M (2010) G protein-coupled receptor kinase 2 plays a relevant role in insulin resistance and obesity. Diabetes 59(10):2407ā€“2417

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Merskey H, Bogduk N (eds) (1994) Part III: pain terms, a current list with definitions and notes on usage. Classification of chronic pain, 2nd edn. IASP Press, Seattle, pp 209ā€“214

    Google ScholarĀ 

  26. Nahin RL (2015) Estimates of pain prevalence and severity in adults: United States, 2012. J Pain 16(8):769ā€“780

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  27. Lolignier S, Eijkelkamp N, Wood JN (2015) Mechanical allodynia. Pflugers Arch 467(1):133ā€“139

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Wu LJ, Steenland HW, Kim SS, Isiegas C, Abel T, Kaang BK, Zhuo M (2008) Enhancement of presynaptic glutamate release and persistent inflammatory pain by increasing neuronal cAMP in the anterior cingulate cortex. Mol Pain 4:40

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  29. Hucho T, Levine JD (2007) Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55(3):365ā€“376

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Song XJ, Wang ZB, Gan Q, Walters ET (2006) cAMP and cGMP contribute to sensory neuron hyperexcitability and hyperalgesia in rats with dorsal root ganglia compression. J Neurophysiol 95(1):479ā€“492

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Eijkelkamp N, Wang H, Garza-Carbajal A, Willemen HL, Zwartkruis FJ, Wood JN, Dantzer R, Kelley KW, Heijnen CJ, Kavelaars A (2010) Low nociceptor GRK2 prolongs prostaglandin E2 hyperalgesia via biased cAMP signaling to Epac/Rap1, protein kinase Cepsilon, and MEK/ERK. J Neurosci 30(38):12806ā€“12815

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Parada CA, Reichling DB, Levine JD (2005) Chronic hyperalgesic priming in the rat involves a novel interaction between cAMP and PKCepsilon second messenger pathways. Pain 113(1ā€“2):185ā€“190

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Wang H, Heijnen CJ, van Velthoven CT, Willemen HL, Ishikawa Y, Zhang X, Sood AK, Vroon A, Eijkelkamp N, Kavelaars A (2013) Balancing GRK2 and EPAC1 levels prevents and relieves chronic pain. J Clin Invest 123(12):5023ā€“5034

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Eijkelkamp N, Linley JE, Torres JM, Bee L, Dickenson AH, Gringhuis M, Minett MS, Hong GS, Lee E, Oh U, Ishikawa Y, Zwartkuis FJ, Cox JJ, Wood JN (2013) A role for Piezo2 in EPAC1-dependent mechanical allodynia. Nat Commun 4:1682

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Shi X, Guo TZ, Wei T, Li WW, Clark DJ, Kingery WS (2015) Facilitated spinal neuropeptide signaling and upregulated inflammatory mediator expression contribute to post-fracture nociceptive sensitization. Pain 156(10):1852ā€“1863

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Ferrari LF, Araldi D, Levine JD (2015) Distinct terminal and cell body mechanisms in the nociceptor mediate hyperalgesic priming. J Neurosci 35(15):6107ā€“6116

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Ferrari LF, Bogen O, Reichling DB, Levine JD (2015) Accounting for the delay in the transition from acute to chronic pain: axonal and nuclear mechanisms. J Neurosci 35(2):495ā€“507

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  38. Aley KO, Messing RO, Mochly-Rosen D, Levine JD (2000) Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon isozyme of protein kinase C. J Neurosci 20(12):4680ā€“4685

    CASĀ  PubMedĀ  Google ScholarĀ 

  39. Bogen O, Dina OA, Gear RW, Levine JD (2009) Dependence of monocyte chemoattractant protein 1 induced hyperalgesia on the isolectin B4-binding protein versican. Neuroscience 159(2):780ā€“786

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Meert TF, Vissers K, Geenen F, Kontinen VK (2003) Functional role of exogenous administration of substance P in chronic constriction injury model of neuropathic pain in gerbils. Pharmacol Biochem Behav 76(1):17ā€“25

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. White FA, Sun J, Waters SM, Ma C, Ren D, Ripsch M, Steflik J, Cortright DN, Lamotte RH, Miller RJ (2005) Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proc Natl Acad Sci U S A 102(39):14092ā€“14097

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Dina OA, McCarter GC, de Coupade C, Levine JD (2003) Role of the sensory neuron cytoskeleton in second messenger signaling for inflammatory pain. Neuron 39(4):613ā€“624

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Ribas C, Penela P, Murga C, Salcedo A, Garcia-Hoz C, Jurado-Pueyo M, Aymerich I, Mayor F Jr (2007) The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta 1768(4):913ā€“922

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Jaber M, Koch WJ, Rockman H, Smith B, Bond RA, Sulik KK, Ross J Jr, Lefkowitz RJ, Caron MG, Giros B (1996) Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci U S A 93(23):12974ā€“12979

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Willemen HL, Eijkelkamp N, Wang H, Dantzer R, Dorn GW 2nd, Kelley KW, Heijnen CJ, Kavelaars A (2010) Microglial/macrophage GRK2 determines duration of peripheral IL-1beta-induced hyperalgesia: contribution of spinal cord CX3CR1, p38 and IL-1 signaling. Pain 150(3):550ā€“560

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Eijkelkamp N, Heijnen CJ, Willemen HL, Deumens R, Joosten EA, Kleibeuker W, den Hartog IJ, van Velthoven CT, Nijboer C, Nassar MA, Dorn GW 2nd, Wood JN, Kavelaars A (2010) GRK2: a novel cell-specific regulator of severity and duration of inflammatory pain. J Neurosci 30(6):2138ā€“2149

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Wang H, Heijnen CJ, Eijkelkamp N, Garza Carbajal A, Schedlowski M, Kelley KW, Dantzer R, Kavelaars A (2011) GRK2 in sensory neurons regulates epinephrine-induced signalling and duration of mechanical hyperalgesia. Pain 152(7):1649ā€“1658

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Eijkelkamp N, Heijnen CJ, Lucas A, Premont RT, Elsenbruch S, Schedlowski M, Kavelaars A (2007) G protein-coupled receptor kinase 6 controls chronicity and severity of dextran sodium sulphate-induced colitis in mice. Gut 56(6):847ā€“854

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Eijkelkamp N, Heijnen CJ, Elsenbruch S, Holtmann G, Schedlowski M, Kavelaars A (2009) G protein-coupled receptor kinase 6 controls post-inflammatory visceral hyperalgesia. Brain Behav Immun 23(1):18ā€“26

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Eijkelkamp N, Heijnen CJ, Carbajal AG, Willemen HL, Wang H, Minett MS, Wood JN, Schedlowski M, Dantzer R, Kelley KW, Kavelaars A (2012) G protein-coupled receptor kinase 6 acts as a critical regulator of cytokine-induced hyperalgesia by promoting phosphatidylinositol 3-kinase and inhibiting p38 signaling. Mol Med 18:556ā€“564

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Ferrari LF, Bogen O, Alessandri-Haber N, Levine E, Gear RW, Levine JD (2012) Transient decrease in nociceptor GRK2 expression produces long-term enhancement in inflammatory pain. Neuroscience 222:392ā€“403

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  52. Reichling DB, Levine JD (2009) Critical role of nociceptor plasticity in chronic pain. Trends Neurosci 32(12):611ā€“618

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Haerter K, Vroon A, Kavelaars A, Heijnen CJ, Limmroth V, Espinosa E, Schedlowski M, Elsenbruch S (2004) In vitro adrenergic modulation of cellular immune functions in experimental autoimmune encephalomyelitis. J Neuroimmunol 146(1ā€“2):126ā€“132

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Tarrant TK, Rampersad RR, Esserman D, Rothlein LR, Liu P, Premont RT, Lefkowitz RJ, Lee DM, Patel DD (2008) Granulocyte chemotaxis and disease expression are differentially regulated by GRK subtype in an acute inflammatory arthritis model (K/BxN). Clin Immunol 129(1):115ā€“122

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Patial S, Saini Y, Parvataneni S, Appledorn DM, Dorn GW 2nd, Lapres JJ, Amalfitano A, Senagore P, Parameswaran N (2011) Myeloid-specific GPCR kinase-2 negatively regulates NF-kappaB1p105-ERK pathway and limits endotoxemic shock in mice. J Cell Physiol 226(3):627ā€“637

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  56. DeLeo JA, Tanga FY, Tawfik VL (2004) Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist 10(1):40ā€“52

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10(1):23ā€“36

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  58. Won KA, Kim MJ, Yang KY, Park JS, Lee MK, Park MK, Bae YC, Ahn DK (2014) The glial-neuronal GRK2 pathway participates in the development of trigeminal neuropathic pain in rats. J Pain 15(3):250ā€“261

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  59. Noguchi K, Okubo M (2011) Leukotrienes in nociceptive pathway and neuropathic/inflammatory pain. Biol Pharm Bull 34(8):1163ā€“1169

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. Ji RR, Gereau RW, Malcangio M, Strichartz GR (2009) MAP kinase and pain. Brain Res Rev 60(1):135ā€“148

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  61. Gao YJ, Ji RR (2010) Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther 126(1):56ā€“68

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  62. Willemen HL, Campos PM, Lucas E, Morreale A, Gil-Redondo R, Agut J, Gonzalez FV, Ramos P, Heijnen C, Mayor F Jr, Kavelaars A, Murga C (2014) A novel p38 MAPK docking-groove-targeted compound is a potent inhibitor of inflammatory hyperalgesia. Biochem J 459(3):427ā€“439

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  63. Anand P, Shenoy R, Palmer JE, Baines AJ, Lai RY, Robertson J, Bird N, Ostenfeld T, Chizh BA (2011) Clinical trial of the p38 MAP kinase inhibitor dilmapimod in neuropathic pain following nerve injury. Eur J Pain 15(10):1040ā€“1048

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  64. Ji RR, Suter MR (2007) p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain 3:33

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  65. Wen YR, Tan PH, Cheng JK, Liu YC, Ji RR (2011) Microglia: a promising target for treating neuropathic and postoperative pain, and morphine tolerance. J Formos Med Assoc 110(8):487ā€“494

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  66. Cheng HT, Dauch JR, Oh SS, Hayes JM, Hong Y, Feldman EL (2010) p38 mediates mechanical allodynia in a mouse model of type 2 diabetes. Mol Pain 6:28

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  67. Tang J, Dong J, Yang L, Gao L, Zheng J (2015) Paroxetine alleviates rat limb post-ischemia induced allodynia through GRK2 upregulation in superior cervical ganglia. Int J Clin Exp Med 8(2):2065ā€“2076

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  68. Dong J, Yang L, Tang J, Zheng J (2015) Dexmedetomidine alleviates rat post-ischemia induced allodynia through GRK2 upregulation in superior cervical ganglia. Auton Neurosci 187:76ā€“83

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Woolf CJ, Ma Q (2007) Nociceptorsā€”noxious stimulus detectors. Neuron 55(3):353ā€“364

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  70. Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis. Nat Med 16(11):1248ā€“1257

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Das V (2015) An introduction to pain pathways and pain ā€œtargetsā€. Prog Mol Biol Transl Sci 131:1ā€“30

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  72. Gilliland CT, Salanga CL, Kawamura T, Trejo J, Handel TM (2013) The chemokine receptor CCR1 is constitutively active, which leads to G protein-independent, beta-arrestin-mediated internalization. J Biol Chem 288(45):32194ā€“32210

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  73. Scholten DJ, Canals M, Maussang D, Roumen L, Smit MJ, Wijtmans M, de Graaf C, Vischer HF, Leurs R (2012) Pharmacological modulation of chemokine receptor function. Br J Pharmacol 165(6):1617ā€“1643

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  74. Nardelli B, Tiffany HL, Bong GW, Yourey PA, Morahan DK, Li Y, Murphy PM, Alderson RF (1999) Characterization of the signal transduction pathway activated in human monocytes and dendritic cells by MPIF-1, a specific ligand for CC chemokine receptor 1. J Immunol 162(1):435ā€“444

    CASĀ  PubMedĀ  Google ScholarĀ 

  75. Vroon A, Heijnen CJ, Lombardi MS, Cobelens PM, Mayor F Jr, Caron MG, Kavelaars A (2004) Reduced GRK2 level in T cells potentiates chemotaxis and signaling in response to CCL4. J Leukoc Biol 75(5):901ā€“909

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  76. Sterne-Marr R, Leahey PA, Bresee JE, Dickson HM, Ho W, Ragusa MJ, Donnelly RM, Amie SM, Krywy JA, Brookins-Danz ED, Orakwue SC, Carr MJ, Yoshino-Koh K, Li Q, Tesmer JJ (2009) GRK2 activation by receptors: role of the kinase large lobe and carboxyl-terminal tail. Biochemistry 48(20):4285ā€“4293

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  77. Pao CS, Barker BL, Benovic JL (2009) Role of the amino terminus of G protein-coupled receptor kinase 2 in receptor phosphorylation. Biochemistry 48(30):7325ā€“7333

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  78. Hucho TB, Dina OA, Levine JD (2005) Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4(+) neuron-specific mechanism. J Neurosci 25(26):6119ā€“6126

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  79. Wang C, Gu Y, Li GW, Huang LY (2007) A critical role of the cAMP sensor Epac in switching protein kinase signalling in prostaglandin E2-induced potentiation of P2X3 receptor currents in inflamed rats. J Physiol 584(Pt 1):191ā€“203

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  80. Kandasamy R, Price TJ (2015) The pharmacology of nociceptor priming. Handb Exp Pharmacol 227:15ā€“37

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  81. Singhmar P, Huo X, Eijkelkamp N, Berciano SR, Baameur F, Mei FC, Zhu Y, Cheng X, Hawke D, Mayor F, Jr., Murga C, Heijnen CJ, Kavelaars A (2016) Critical role for Epac1 in inflammatory pain controlled by GRK2-mediated phosphorylation of Epac1. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073/pnas.1516036113

    Google ScholarĀ 

  82. Dina OA, Parada CA, Yeh J, Chen X, McCarter GC, Levine JD (2004) Integrin signaling in inflammatory and neuropathic pain in the rat. Eur J Neurosci 19(3):634ā€“642

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  83. Gao YJ, Ji RR (2010) Targeting astrocyte signaling for chronic pain. Neurotherapeutics 7(4):482ā€“493

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  84. Morioka N, Zhang FF, Nakamura Y, Kitamura T, Hisaoka-Nakashima K, Nakata Y (2015) Tumor necrosis factor-mediated downregulation of spinal astrocytic connexin43 leads to increased glutamatergic neurotransmission and neuropathic pain in mice. Brain Behav Immun 49:293ā€“310

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  85. Ji XT, Qian NS, Zhang T, Li JM, Li XK, Wang P, Zhao DS, Huang G, Zhang L, Fei Z, Jia D, Niu L (2013) Spinal astrocytic activation contributes to mechanical allodynia in a rat chemotherapy-induced neuropathic pain model. PLoS One 8(4):e60733

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  86. Yoon SY, Robinson CR, Zhang H, Dougherty PM (2013) Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity. J Pain 14(2):205ā€“214

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  87. Nijboer CH, Heijnen CJ, Degos V, Willemen HL, Gressens P, Kavelaars A (2013) Astrocyte GRK2 as a novel regulator of glutamate transport and brain damage. Neurobiol Dis 54:206ā€“215

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  88. Kleibeuker W, Jurado-Pueyo M, Murga C, Eijkelkamp N, Mayor F Jr, Heijnen CJ, Kavelaars A (2008) Physiological changes in GRK2 regulate CCL2-induced signaling to ERK1/2 and Akt but not to MEK1/2 and calcium. J Neurochem 104(4):979ā€“992

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  89. Winkelstein BA, Rutkowski MD, Sweitzer SM, Pahl JL, DeLeo JA (2001) Nerve injury proximal or distal to the DRG induces similar spinal glial activation and selective cytokine expression but differential behavioral responses to pharmacologic treatment. J Comp Neurol 439(2):127ā€“139

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  90. Willemen HL, Huo XJ, Mao-Ying QL, Zijlstra J, Heijnen CJ, Kavelaars A (2012) MicroRNA-124 as a novel treatment for persistent hyperalgesia. J Neuroinflammation 9:143

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  91. Willemen HL, Eijkelkamp N, Garza Carbajal A, Wang H, Mack M, Zijlstra J, Heijnen CJ, Kavelaars A (2014) Monocytes/macrophages control resolution of transient inflammatory pain. J Pain 15(5):496ā€“506

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  92. Kleibeuker W, Gabay E, Kavelaars A, Zijlstra J, Wolf G, Ziv N, Yirmiya R, Shavit Y, Tal M, Heijnen CJ (2008) IL-1 beta signaling is required for mechanical allodynia induced by nerve injury and for the ensuing reduction in spinal cord neuronal GRK2. Brain Behav Immun 22(2):200ā€“208

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  93. Kleibeuker W, Ledeboer A, Eijkelkamp N, Watkins LR, Maier SF, Zijlstra J, Heijnen CJ, Kavelaars A (2007) A role for G protein-coupled receptor kinase 2 in mechanical allodynia. Eur J Neurosci 25(6):1696ā€“1704

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  94. Zhou Y, Huang X, Wu H, Xu Y, Tao T, Xu G, Cheng C, Cao S (2013) Decreased expression and role of GRK6 in spinal cord of rats after chronic constriction injury. Neurochem Res 38(10):2168ā€“2179

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  95. Giorelli M, Livrea P, Trojano M (2004) Post-receptorial mechanisms underlie functional disregulation of beta2-adrenergic receptors in lymphocytes from Multiple Sclerosis patients. J Neuroimmunol 155(1ā€“2):143ā€“149

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  96. Hagen SA, Kondyra AL, Grocott HP, El-Moalem H, Bainbridge D, Mathew JP, Newman MF, Reves JG, Schwinn DA, Kwatra MM (2003) Cardiopulmonary bypass decreases G protein-coupled receptor kinase activity and expression in human peripheral blood mononuclear cells. Anesthesiology 98(2):343ā€“348

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  97. Bona E, Andersson AL, Blomgren K, Gilland E, Puka-Sundvall M, Gustafson K, Hagberg H (1999) Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res 45(4 Pt 1):500ā€“509

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  98. Liu F, McCullough LD (2013) Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin 34(9):1121ā€“1130

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  99. van den Tweel ER, Nijboer C, Kavelaars A, Heijnen CJ, Groenendaal F, van Bel F (2005) Expression of nitric oxide synthase isoforms and nitrotyrosine formation after hypoxia-ischemia in the neonatal rat brain. J Neuroimmunol 167(1ā€“2):64ā€“71

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  100. van den Tweel ER, Kavelaars A, Lombardi MS, Nijboer CH, Groenendaal F, van Bel F, Heijnen CJ (2006) Bilateral molecular changes in a neonatal rat model of unilateral hypoxic-ischemic brain damage. Pediatr Res 59(3):434ā€“439

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  101. Lombardi MS, van den Tweel E, Kavelaars A, Groenendaal F, van Bel F, Heijnen CJ (2004) Hypoxia/ischemia modulates G protein-coupled receptor kinase 2 and beta-arrestin-1 levels in the neonatal rat brain. Stroke 35(4):981ā€“986

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  102. Yu X, Zhang M, Kyker K, Patterson E, Benovic JL, Kem DC (2000) Ischemic inactivation of G protein-coupled receptor kinase and altered desensitization of canine cardiac beta-adrenergic receptors. Circulation 102(20):2535ā€“2540

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  103. Arraes SM, Freitas MS, da Silva SV, de Paula Neto HA, Alves-Filho JC, Auxiliadora Martins M, Basile-Filho A, Tavares-Murta BM, Barja-Fidalgo C, Cunha FQ (2006) Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood 108(9):2906ā€“2913

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  104. Loniewski K, Shi Y, Pestka J, Parameswaran N (2008) Toll-like receptors differentially regulate GPCR kinases and arrestins in primary macrophages. Mol Immunol 45(8):2312ā€“2322

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  105. Alves-Filho JC, Freitas A, Souto FO, Spiller F, Paula-Neto H, Silva JS, Gazzinelli RT, Teixeira MM, Ferreira SH, Cunha FQ (2009) Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc Natl Acad Sci U S A 106(10):4018ā€“4023

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  106. Lombardi MS, Kavelaars A, Penela P, Scholtens EJ, Roccio M, Schmidt RE, Schedlowski M, Mayor F Jr, Heijnen CJ (2002) Oxidative stress decreases G protein-coupled receptor kinase 2 in lymphocytes via a calpain-dependent mechanism. Mol Pharmacol 62(2):379ā€“388

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  107. Lombardi MS, Kavelaars A, Cobelens PM, Schmidt RE, Schedlowski M, Heijnen CJ (2001) Adjuvant arthritis induces down-regulation of G protein-coupled receptor kinases in the immune system. J Immunol 166(3):1635ā€“1640

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  108. Vroon A, Heijnen CJ, Kavelaars A (2006) GRKs and arrestins: regulators of migration and inflammation. J Leukoc Biol 80(6):1214ā€“1221

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  109. Cobelens PM, Kavelaars A, Heijnen CJ, Ribas C, Mayor F Jr, Penela P (2007) Hydrogen peroxide impairs GRK2 translation via a calpain-dependent and cdk1-mediated pathway. Cell Signal 19(2):269ā€“277

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  110. Abe MK, Kartha S, Karpova AY, Li J, Liu PT, Kuo WL, Hershenson MB (1998) Hydrogen peroxide activates extracellular signal-regulated kinase via protein kinase C, Raf-1, and MEK1. Am J Respir Cell Mol Biol 18(4):562ā€“569

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  111. Lombardi MS, Vroon A, Sodaar P, van Muiswinkel FL, Heijnen CJ, Kavelaars A (2007) Down-regulation of GRK2 after oxygen and glucose deprivation in rat hippocampal slices: role of the PI3-kinase pathway. J Neurochem 102(3):731ā€“740

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  112. Ramos-Ruiz R, Penela P, Penn RB, Mayor F Jr (2000) Analysis of the human G protein-coupled receptor kinase 2 (GRK2) gene promoter: regulation by signal transduction systems in aortic smooth muscle cells. Circulation 101(17):2083ā€“2089

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  113. Woodall MC, Ciccarelli M, Woodall BP, Koch WJ (2014) G protein-coupled receptor kinase 2: a link between myocardial contractile function and cardiac metabolism. Circ Res 114(10):1661ā€“1670

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  114. Mayor F Jr, Lucas E, Jurado-Pueyo M, Garcia-Guerra L, Nieto-Vazquez I, Vila-Bedmar R, Fernandez-Veledo S, Murga C (2011) G Protein-coupled receptor kinase 2 (GRK2): a novel modulator of insulin resistance. Arch Physiol Biochem 117(3):125ā€“130

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  115. Vila-Bedmar R, Cruces-Sande M, Lucas E, Willemen HL, Heijnen CJ, Kavelaars A, Mayor F Jr, Murga C (2015) Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2. Sci Signal 8(386):ra73

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  116. Wolfe D, Wechuck J, Krisky D, Mata M, Fink DJ (2009) A clinical trial of gene therapy for chronic pain. Pain Med 10(7):1325ā€“1330

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  117. Chen H, Wild C, Zhou X, Ye N, Cheng X, Zhou J (2014) Recent advances in the discovery of small molecules targeting exchange proteins directly activated by cAMP (EPAC). J Med Chem 57(9):3651ā€“3665

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  118. Gong B, Shelite T, Mei FC, Ha T, Hu Y, Xu G, Chang Q, Wakamiya M, Ksiazek TG, Boor PJ, Bouyer DH, Popov VL, Chen J, Walker DH, Cheng X (2013) Exchange protein directly activated by cAMP plays a critical role in bacterial invasion during fatal rickettsioses. Proc Natl Acad Sci U S A 110(48):19615ā€“19620

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  119. Almahariq M, Tsalkova T, Mei FC, Chen H, Zhou J, Sastry SK, Schwede F, Cheng X (2013) A novel EPAC-specific inhibitor suppresses pancreatic cancer cell migration and invasion. Mol Pharmacol 83(1):122ā€“128

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  120. Kwilasz AJ, Grace PM, Serbedzija P, Maier SF, Watkins LR (2015) The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology 96(Pt A):55ā€“69

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  121. Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267ā€“284

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  122. Kuner R (2010) Central mechanisms of pathological pain. Nat Med 16(11):1258ā€“1266

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  123. Eijkelkamp N, Singhmar P, Heijnen CJ, Kavelaars A (2015) Sensory neuron cAMP signaling in chronic pain. Cyclic Nucleotide Signaling 13:113

    Google ScholarĀ 

  124. de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396(6710):474ā€“477

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  125. Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282(5397):2275ā€“2279

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

The work of Drs. Kavelaars and Heijnen is supported by grants NS 073939, NS 074999, CA 183736, and CA 193522 from the National Institutes of Health and a STAR grant from the University of Texas System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemieke Kavelaars Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Baameur, F., Singhmar, P., Heijnen, C.J., Kavelaars, A. (2016). Critical Role of GRK2 in the Prevention of Chronic Pain. In: Gurevich, V., Gurevich, E., Tesmer, J. (eds) G Protein-Coupled Receptor Kinases. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3798-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3798-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3796-7

  • Online ISBN: 978-1-4939-3798-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics