Skip to main content

Functional MRI: Applications in Cognitive Neuroscience

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 119))

Abstract

Neuroimaging, in many respects, revolutionized the study of cognitive neuroscience, the discipline that attempts to determine the neural mechanisms underlying cognitive processes. Early studies of brain–behavior relationships relied on a precise neurological exam as the basis for hypothesizing the site of brain damage that was responsible for a given behavioral syndrome. The advent of structural brain imaging, first with computerized tomography and later with magnetic resonance imaging, paved the way for more precise anatomical localization of the cognitive deficits that manifest after brain injury. Functional neuroimaging, broadly defined as techniques that provide measures of brain activity, further increased our ability to study the neural basis of behavior. Functional MRI (fMRI), in particular, is an extremely powerful technique that affords excellent spatial and temporal resolution. This chapter focuses on the principles underlying fMRI as a cognitive neuroscience tool for exploring brain–behavior relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broca P (1861) Remarques sur le siege de la faculte du langage articule suivies d’une observation d’amphemie (perte de al parole). Bull Mem Soc Anat Paris 36:330–357

    Google Scholar 

  2. Buckner RL, Raichle ME, Petersen SE (1995) Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. J Neurophysiol 74(5):2163–2173

    CAS  PubMed  Google Scholar 

  3. Sarter M, Bernston G, Cacioppo J (1996) Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure. Am Psychol 51:13–21

    Article  CAS  PubMed  Google Scholar 

  4. Gaffan D, Gaffan EA (1991) Amnesia in man following transection of the fornix: a review. Brain 114:2611–2618

    Article  PubMed  Google Scholar 

  5. Feeney DM, Baron JC (1986) Diaschisis. Stroke 17(5):817–830

    Article  CAS  PubMed  Google Scholar 

  6. Carrera E, Tononi G (2014) Diaschisis: past, present, future. Brain 137:2408–2422

    Article  PubMed  Google Scholar 

  7. Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654

    Article  CAS  PubMed  Google Scholar 

  8. Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    CAS  PubMed  Google Scholar 

  9. Funahashi S, Bruce CJ, Goldman-Rakic PS (1993) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas”. J Neurosci 13:1479–1497

    CAS  PubMed  Google Scholar 

  10. Watanabe T, Niki H (1985) Hippocampal unit activity and delayed response in the monkey. Brain Res 325(1–2):241–254

    Article  CAS  PubMed  Google Scholar 

  11. Cahusac PM, Miyashita Y, Rolls ET (1989) Responses of hippocampal formation neurons in the monkey related to delayed spatial response and object-place memory tasks. Behav Brain Res 33(3):229–240

    Article  CAS  PubMed  Google Scholar 

  12. Alvarez P, Zola-Morgan S, Squire LR (1994) The animal model of human amnesia: long-term memory impaired and short-term memory intact. Proc Natl Acad Sci U S A 91(12):5637–5641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corkin S (1984) Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Semin Neurol 4:249–259

    Article  Google Scholar 

  14. Ranganath C, D’Esposito M (2001) Medial temporal lobe activity associated with active maintenance of novel information. Neuron 31(5):865–873

    Article  CAS  PubMed  Google Scholar 

  15. D’Esposito M (2010) Why methods matter in the study of the biological basis of the mind: a behavioral neurologist’s perspective. In: Reuter-Lorenz PA, Baynes K, Mangun GR, Phelps EA (eds) The cognitive neursocience of mind: a tribute to Michael Gazzaniga. MIT Press, Cambridge, MA

    Google Scholar 

  16. Druzgal TJ, D’Esposito M (2001) Activity in fusiform face area modulated as a function of working memory load. Brain Res Cogn Brain Res 10(3):355–364

    Article  CAS  PubMed  Google Scholar 

  17. Henson R (2006) Forward inference using functional neuroimaging: dissociations versus associations. Trends Cogn Sci 10(2):64–69

    Article  PubMed  Google Scholar 

  18. Cohen MS, Kosslyn SM, Breiter HC et al (1996) Changes in cortical activity during mental rotation: a mapping study using functional MRI. Brain 119:89–100

    Article  PubMed  Google Scholar 

  19. D’Esposito M, Ballard D, Aguirre GK, Zarahn E (1998) Human prefrontal cortex is not specific for working memory: a functional MRI study. Neuroimage 8(3):274–282

    Article  PubMed  Google Scholar 

  20. Poldrack RA (2006) Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci 10(2):59–63

    Article  PubMed  Google Scholar 

  21. Grasby PM (2002) Imaging the neurochemical brain in health and disease. Clin Med 2(1):67–73

    Article  CAS  Google Scholar 

  22. Landau SM, Lal R, O'Neil JP, Baker S, Jagust WJ (2009) Striatal dopamine and working memory. Cereb Cortex 19(2):445–454

    Article  PubMed  Google Scholar 

  23. Blakemore SJ (2012) Imaging brain development: the adolescent brain. Neuroimage 61(2):397–406

    Article  PubMed  Google Scholar 

  24. Ritter P, Villringer A (2006) Simultaneous EEG-fMRI. Neurosci Biobehav Rev 30(6):823–838

    Article  PubMed  Google Scholar 

  25. Jorge J, van der Zwaag W, Figueiredo P (2013) EEG-fMRI integration for the study of human brain function. Neuroimage 102:24–34

    Article  PubMed  Google Scholar 

  26. Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud A-L, Kleinschmidt A (2010) Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J Neurosci 30(30):10243–10250

    Article  CAS  PubMed  Google Scholar 

  27. Sadeh B, Podlipsky I, Zhdanov A, Yovel G (2010) Event-related potential and functional MRI measures of face-selectivity are highly correlated: a simultaneous ERP-fMRI investigation. Hum Brain Mapp 31(10):1490–1501

    Article  PubMed  Google Scholar 

  28. Becker R, Reinacher M, Freyer F, Villringer A, Ritter P (2011) How ongoing neuronal oscillations account for evoked fMRI variability. J Neurosci 31(30):11016–11027

    Article  CAS  PubMed  Google Scholar 

  29. Bergmann TO, Mölle M, Diedrichs J, Born J, Siebner HR (2012) Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations. Neuroimage 59(3):2733–2742

    Article  PubMed  Google Scholar 

  30. Mantini D, Perrucci MG, Cugini S, Ferretti A, Romani GL, Del Gratta C (2007) Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis. Neuroimage 34:598–607

    Article  CAS  PubMed  Google Scholar 

  31. Debener S, Strobel A, Sorger B et al (2007) Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: Removal of the ballistocardiogram artefact. Neuroimage 34:587–597

    Article  PubMed  Google Scholar 

  32. Moosmann M, Schönfelder VH, Specht K, Scheeringa R, Nordby H, Hugdahl K (2009) Realignment parameter-informed artefact correction for simultaneous EEG-fMRI recordings. Neuroimage 45(4):1144–1150

    Article  PubMed  Google Scholar 

  33. Mullinger KJ, Yan WX, Bowtell R (2011) Reducing the gradient artefact in simultaneous EEG-fMRI by adjusting the subject’s axial position. Neuroimage 54:1942–1950

    Article  PubMed  Google Scholar 

  34. Neuner I, Arrubla J, Felder J, Shah NJ (2014) Simultaneous EEG-fMRI acquisition at low, high and ultra-high magnetic fields up to 9.4T: perspectives and challenges. Neuroimage 102(P1):71–79

    Article  PubMed  Google Scholar 

  35. Feredoes E, Heinen K, Weiskopf N, Ruff C, Driver J (2011) Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory. Proc Natl Acad Sci U S A 108(42):17510–17515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E, Haynes J, Driver J (2006) Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol 16(15):1479–1488

    Article  CAS  PubMed  Google Scholar 

  37. Chen AC, Oathes DJ, Chang C, Bradley T, Zhou Z-W, Williams LM, Etkin A (2013) Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc Natl Acad Sci U S A 110(49):19944–19949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yau JM, Hua J, Liao DA, Desmond JE (2013) Efficient and robust identification of cortical targets in concurrent TMS-fMRI experiments. NeuroImage 76:134–144

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gnadt JW, Andersen RA (1988) Memory related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res 70:216–220

    CAS  PubMed  Google Scholar 

  40. Aguirre GK, Zarahn E, D’Esposito M (1998) The variability of human, BOLD hemodynamic responses. Neuroimage 8(4):360–369

    Article  CAS  PubMed  Google Scholar 

  41. Handwerker DA, Ollinger JM, D’Esposito M (2004) Variation of BOLD hemodynamic responses across brain regions and subjects and their effects on statistical analyses. NeuroImage 21:1639–1651

    Article  PubMed  Google Scholar 

  42. Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221

    CAS  PubMed  Google Scholar 

  43. Kim SG, Richter W, Ugurbil K (1997) Limitations of temporal resolution in fMRI. Magn Reson Med 37:631–636

    Article  CAS  PubMed  Google Scholar 

  44. Savoy RL, Bandettini PA, O’Craven KM et al (1995) Pushing the temporal resolution of fMRI: studies of very brief stimuli, onset of variability and asynchrony, and stimulu-correlated changes in noise. Proc Soc Magn Reson Med 3:450

    Google Scholar 

  45. Zarahn E, Aguirre GK, D’Esposito M (1997) A trial-based experimental design for functional MRI. NeuroImage 6:122–138

    Article  CAS  PubMed  Google Scholar 

  46. Burock MA, Buckner RL, Woldorff MG, Rosen BR, Dale AM (1998) Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport 9(16):3735–3739

    Article  CAS  PubMed  Google Scholar 

  47. Clark VP, Maisog JM, Haxby JV (1997) fMRI studies of visual perception and recognition using a random stimulus design. Soc Neurosci Abstr 23:301

    Google Scholar 

  48. Dale AM, Buckner RL (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5:1–12

    Article  Google Scholar 

  49. Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL (2000) Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage 11(6 Pt 1):735–759

    Article  CAS  PubMed  Google Scholar 

  50. D’Esposito M, Zarahn E, Aguirre GK (1999) Event-related functional MRI: implications for cognitive psychology. Psychol Bull 125:155–164

    Article  PubMed  Google Scholar 

  51. Besle J, Sanchez-Panchuelo R, Bowtell R, Francis S, Schluppeck D (2014) Event-related fMRI at 7 T reveals overlapping cortical representations for adjacent fingertips in S1 of individual subjects. Hum Brain Mapp 35:2027–2043

    Article  PubMed  Google Scholar 

  52. Ehses P, Bause J, Shajan G, Scheffler K. Efficient generation of T2*-weighted contrast by interslice echo-shifting for human functional and anatomacil imaging at 9.4 Tesla. Magn Reson Med (epub ahead of print)

    Google Scholar 

  53. Budde J, Shajan G, Zaitsev M, Scheffler K, Functional PR, MRI (2014) Human subjects with gradient-echo and spin-echo EPI at 9.4 T. Magn Reson Med 2014(71):209–218

    Article  Google Scholar 

  54. Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551–554

    Article  CAS  PubMed  Google Scholar 

  55. Kim SG, Duong TQ (2002) Mapping cortical columnar structures using fMRI. Physiol Behav 77(4–5):641–644

    Article  CAS  PubMed  Google Scholar 

  56. Grill-Spector K, Malach R (2001) fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol (Amst) 107(1–3):293–321

    Article  CAS  Google Scholar 

  57. Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24(1):187–203

    Article  CAS  PubMed  Google Scholar 

  58. Posner MI, Petersen SE, Fox PT, Raichle ME (1988) Localization of cognitive operations in the human brain. Science 240:1627–1631

    Article  CAS  PubMed  Google Scholar 

  59. Sternberg S (1969) The discovery of processing stages: extensions of Donders’ method. Acta Psychol 30:276–315

    Article  Google Scholar 

  60. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME (1988) Positron emission tomographic studies of the cortical anatomy of single word processing. Nature 331:585–589

    Article  CAS  PubMed  Google Scholar 

  61. Fuster J (1997) The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobes, 3rd edn. Raven, New York

    Google Scholar 

  62. Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA (1993) Spatial working memory in humans as revealed by PET. Nature 363:623–625

    Article  CAS  PubMed  Google Scholar 

  63. Sreenivasan KK, Curtis CE, D’Esposito M (2014) Revising the role of persistent neural activity in working memory. Trends Cogn Sci 18:82–89

    Article  PubMed  PubMed Central  Google Scholar 

  64. Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25(12):621–625

    Article  CAS  PubMed  Google Scholar 

  65. Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? Nat Rev Neurosci 3(2):142–151

    Article  CAS  PubMed  Google Scholar 

  66. Friston KJ, Josephs O, Rees G, Turner R (1998) Nonlinear event-related responses in fMRI. Magn Reson Med 39(1):41–52

    Article  CAS  PubMed  Google Scholar 

  67. Glover GH (1999) Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 9(4):416–429

    Article  CAS  PubMed  Google Scholar 

  68. Miller KL, Luh WM, Liu TT et al (2001) Nonlinear temporal dynamics of the cerebral blood flow response. Hum Brain Mapp 13(1):1–12

    Article  CAS  PubMed  Google Scholar 

  69. Vazquez AL, Noll DC (1998) Nonlinear aspects of the BOLD response in functional MRI. NeuroImage 7(2):108–118

    Article  CAS  PubMed  Google Scholar 

  70. D’Esposito M, Zarahn E, Aguirre GK, Rypma B (1999) The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage 10(1):6–14

    Article  PubMed  Google Scholar 

  71. Rosen BR, Buckner RL, Dale AM (1998) Event-related functional MRI: past, present, and future. Proc Natl Acad Sci U S A 95(3):773–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Donaldson DI, Petersen SE, Ollinger JM, Buckner RL (2001) Dissociating state and item components of recognition memory using fMRI. Neuroimage 13(1):129–142

    Article  CAS  PubMed  Google Scholar 

  73. Mitchell KJ, Johnson MK, Raye CL, D’Esposito M (2000) fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Brain Res Cogn Brain Res 10(1–2):197–206

    Article  CAS  PubMed  Google Scholar 

  74. Keppel G, Zedeck S (1989) Data analysis for research design. W.H. Freeman, New York

    Google Scholar 

  75. Worsley KJ, Friston KJ (1995) Analysis of fMRI time-series revisited – again. Neuroimage 2:173–182

    Article  CAS  PubMed  Google Scholar 

  76. Nichols T, Hayasaka S (2003) Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Methods Med Res 12(5):419–446

    Article  PubMed  Google Scholar 

  77. Eklund A, Andersson M, Josephson C, Johannesson M, Knutsson H (2012) Does parametric fMRI analysis with SPM yield valid results? An empirical study of 1484 rest datasets. Neuroimage 61(3):565–578

    Article  PubMed  Google Scholar 

  78. Zarahn E, Aguirre GK, D’Esposito M (1997) Empirical analyses of BOLD fMRI statistics. I Spatially unsmoothed data collected under null-hypothesis conditions. NeuroImage 5:179–197

    Article  CAS  PubMed  Google Scholar 

  79. Aguirre GK, Zarahn E, D’Esposito M (1997) Empirical analyses of BOLD fMRI statistics. II Spatially smoothed data collected under null-hypothesis and experimental conditions. NeuroImage 5:199–212

    Article  CAS  PubMed  Google Scholar 

  80. D’Esposito M, Ballard D, Zarahn E, Aguirre GK (2000) The role of prefrontal cortex in sensory memory and motor preparation: an event-related fMRI study. Neuroimage 11(5 Pt 1):400–408

    Article  PubMed  Google Scholar 

  81. Zarahn E, Slifstein M (2001) A reference effect approach for power analysis in fMRI. Neuroimage 14(3):768–779

    Article  CAS  PubMed  Google Scholar 

  82. Van Horn JD, Ellmore TM, Esposito G, Berman KF (1998) Mapping voxel-based statistical power on parametric images. Neuroimage 7(2):97–107

    Article  PubMed  Google Scholar 

  83. Aguirre GK, D’Esposito M (1999) Experimental design for brain fMRI. In: Moonen CTW, Bandettini PA (eds) Functional MRI. Springer, Berlin, pp 369–380

    Google Scholar 

  84. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    Article  CAS  PubMed  Google Scholar 

  85. Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64(6):575–611

    Article  CAS  PubMed  Google Scholar 

  86. Fang HCH (1976) Observations on aging characteristics of cerebral blood vessels, macroscopic and microscopic features. In: Gerson S, Terry RD (eds) Neurobiology of aging. Raven, New York

    Google Scholar 

  87. Bentourkia M, Bol A, Ivanoiu A et al (2000) Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 181(1–2):19–28

    Article  CAS  PubMed  Google Scholar 

  88. Schultz SK, O’Leary DS, Boles Ponto LL, Watkins GL, Hichwa RD, Andreasen NC (1999) Age-related changes in regional cerebral blood flow among young to mid-life adults. Neuroreport 10(12):2493–2496

    Article  CAS  PubMed  Google Scholar 

  89. Yamamoto M, Meyer JS, Sakai F, Yamaguchi F (1980) Aging and cerebral vasodilator responses to hypercarbia: responses in normal aging and in persons with risk factors for stroke. Arch Neurol 37(8):489–496

    Article  CAS  PubMed  Google Scholar 

  90. Yamaguchi T, Kanno I, Uemura K et al (1986) Reduction in regional cerebral rate of oxygen during human aging. Stroke 17:1220–1228

    Article  CAS  PubMed  Google Scholar 

  91. Takada H, Nagata K, Hirata Y et al (1992) Age-related decline of cerebral oxygen metabolism in normal population detected with positron emission tomography. Neurol Res 14(2 Suppl):128–131

    Article  CAS  PubMed  Google Scholar 

  92. Claus JJ, Breteler MM, Hasan D et al (1998) Regional cerebral blood flow and cerebrovascular risk factors in the elderly population. Neurobiol Aging 19(1):57–64

    Article  CAS  PubMed  Google Scholar 

  93. Cunnington R, Iansek R, Bradshaw JL, Phillips JG (1995) Movement-related potentials in Parkinson’s disease. Presence and predictability of temporal and spatial cues. Brain 118(Pt 4):935–950

    Article  PubMed  Google Scholar 

  94. Buckner RL, Snyder AZ, Sanders AL, Raichle ME, Morris JC (2000) Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 12(Suppl 2):24–34

    Article  PubMed  Google Scholar 

  95. Huettel SA, Singerman JD, McCarthy G (2001) The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage 13(1):161–175

    Article  CAS  PubMed  Google Scholar 

  96. Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM (2002) Altered hemodynamic responses in patients after subcortical stroke measured by functional MRI. Stroke 33(1):103–109

    Article  CAS  PubMed  Google Scholar 

  97. D’Esposito M, Deouell L, Gazzaley A (2003) Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 4:863–872

    Article  PubMed  CAS  Google Scholar 

  98. Handwerker DA, Gazzaley A, Inglis BA, D’Esposito M (2006) Reducing vascular variability of fMRI data across aging populations using a breath holding task. Hum Brain Mapp 28:846–859

    Article  Google Scholar 

  99. Wolf RL, Detre JA (2007) Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging. Neurotherapeutics 4(3):346–359

    Article  PubMed  PubMed Central  Google Scholar 

  100. Brown GG, Clark C, Liu TT (2007) Measurement of cerebral perfusion with arterial spin labeling. Part 2. Applications. J Int Neuropsychol Soc 13(3):526–538

    Article  PubMed  PubMed Central  Google Scholar 

  101. Aguirre GK, Detre JA, Zarahn E, Alsop DC (2002) Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage 15(3):488–500

    Article  CAS  PubMed  Google Scholar 

  102. Liu TT, Brown GG (2007) Measurement of cerebral perfusion with arterial spin labeling. Part 1. Methods. J Int Neuropsychol Soc 13(3):517–525

    Article  PubMed  Google Scholar 

  103. Fernandez-Seara MA, Wang J, Wang Z et al (2007) Imaging mesial temporal lobe activation during scene encoding: comparison of fMRI using BOLD and arterial spin labeling. Hum Brain Mapp 28(12):1391–1400

    Article  PubMed  Google Scholar 

  104. Feinberg DA, Beckett A, Chen L (2013) Arterial spin labeling with simultaneous multi-slice echo planar imaging. Magn Reson Med 70(6):1500–1506

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    CAS  PubMed  Google Scholar 

  106. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539):2425–2430

    Article  CAS  PubMed  Google Scholar 

  107. Polyn SM, Natu VS, Cohen JD, Norman KA (2005) Category-specific cortical activity precedes retrieval during memory search. Science 310(5756):1963–1966

    Article  CAS  PubMed  Google Scholar 

  108. Zarahn E, Rakitin BC, Abela D, Flynn J, Stern Y (2006) Distinct spatial patterns of brain activity associated with memory storage and search. Neuroimage 33(2):794–804

    Article  PubMed  Google Scholar 

  109. Kay KN, Naselaris T, Prenger RJ, Gallant JG (2008) Identifying natural images from human brain activity. Nature 452:352–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Haxby JV, Connolly AC, Swaroop GJ (2014) Decoding neural representational spaces using multivariate pattern analysis. Annu Rev Neurosci 37:435–456

    Article  CAS  PubMed  Google Scholar 

  111. Tong F, Pratte MS (2012) Decoding patterns of human brain activity. Annu Rev Psychol 63:483–509

    Article  PubMed  Google Scholar 

  112. Todd MT, Nystrom LE, Cohen JE (2013) Confounds in multivariate pattern analysis: theory and rule representation case study. NeuroImage 77:157–165

    Article  PubMed  Google Scholar 

  113. Chen AJW, Britton MS, Thompson TW, Turner GR, Vytlacil J, D’Esposito M (2012) Goal-directed attention alters the tuning of object-based representations in extrastriate cortex. Front Neurosci 6:187

    Article  CAS  Google Scholar 

  114. Çukur TNishimoto S, Huth A, Gallant J (2013) Attention during natural vision warps semantic representation across the human brain. Nat Neurosci 16:763–770

    Article  CAS  Google Scholar 

  115. Buchel C, Coull JT, Friston KJ (1999) The predictive value of changes in effective connectivity for human learning. Science 283(5407):1538–1541

    Article  CAS  PubMed  Google Scholar 

  116. McIntosh AR, Grady CL, Haxby JV, Ungerleider LG, Horwitz B (1996) Changes in limbic and prefrontal functional interactions in a working memory task for faces. Cereb Cortex 6(4):571–584

    Article  CAS  PubMed  Google Scholar 

  117. Gerstein GL, Perkel DH, Subramanian KN (1978) Identification of functionally related neural assemblies. Brain Res 140(1):43–62

    Article  CAS  PubMed  Google Scholar 

  118. Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Modelling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage 23(Suppl 1):S264–S274

    Article  PubMed  Google Scholar 

  119. Sun FT, Miller LM, D’Esposito M (2004) Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neuroimage 21(2):647–658

    Article  PubMed  Google Scholar 

  120. Sun FT, Miller LM, D’Esposito M (2005) Measuring temporal dynamics of functional networks using phase spectrum of fMRI data. Neuroimage 28(1):227–237

    Article  PubMed  Google Scholar 

  121. Sun FT, Miller LM, Rao AA, D’Esposito M (2007) Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cereb Cortex 17(5):1227–1234

    Article  PubMed  Google Scholar 

  122. Gazzaley A, Rissman J, D’Esposito M (2004) Functional connectivity during working memory maintenance. Cogn Affect Behav Neurosci 4(4):580–599

    Article  PubMed  Google Scholar 

  123. Fuhrmann Alpert G, Sun FT, Handwerker D, D’Esposito M, Knight RT (2007) Spatio-temporal information analysis of event-related BOLD responses. Neuroimage 34(4):1545–1561

    Article  PubMed  Google Scholar 

  124. Rees G, Frith CD, Lavie N (1997) Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science 278(5343):1616–1619

    Article  CAS  PubMed  Google Scholar 

  125. Treisman AM (1969) Strategies and models of selective attention. Psychol Rev 76(3):282–299

    Article  CAS  PubMed  Google Scholar 

  126. Lavie N, Tsal Y (1994) Perceptual load as a major determinant of the locus of selection in visual attention. Percept Psychophys 56(2):183–197

    Article  CAS  PubMed  Google Scholar 

  127. McCarthy RA, Warrington EK (1994) Disorders of semantic memory. Philos Trans R Soc Lond B Biol Sci 346(1315):89–96

    Article  CAS  PubMed  Google Scholar 

  128. Warrington EST (1984) Category specific semantic impairments. Brain 107:829–854

    Article  PubMed  Google Scholar 

  129. Thompson-Schill SL (2003) Neuroimaging studies of semantic memory: inferring “how” from “where”. Neuropsychologia 41(3):280–292

    Article  PubMed  Google Scholar 

  130. Thompson-Schill SL, D’Esposito M, Aguirre GK, Farah MJ (1997) Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U S A 94(26):14792–14797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Thompson-Schill SL, Swick D, Farah MJ, D’Esposito M, Kan IP, Knight RT (1998) Verb generation in patients with focal frontal lesions: a neuropsychological test of neuroimaging findings. Proc Natl Acad Sci U S A 95(26):15855–15860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pascual-Leone A, Tarazona F, Keenan J, Tormos JM, Hamilton R, Catala MD (1999) Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia 37(2):207–217

    Article  CAS  PubMed  Google Scholar 

  133. Rushworth MF, Hadland KA, Paus T, Sipila PK (2002) Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. J Neurophysiol 87(5):2577–2592

    CAS  PubMed  Google Scholar 

  134. Ruff CC, Bestmann S, Blankenburg F et al (2008) Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS fMRI. Cereb Cortex 18(4):817–827

    Article  PubMed  Google Scholar 

  135. Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S (1999) Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284(5416):970–974

    Article  CAS  PubMed  Google Scholar 

  136. Gibbs SE, D’Esposito M (2005) Individual capacity differences predict working memory performance and prefrontal activity following dopamine receptor stimulation. Cogn Affect Behav Neurosci 5(2):212–221

    Article  PubMed  Google Scholar 

  137. Gibbs SE, D’Esposito M (2005) A functional MRI study of the effects of bromocriptine, a dopamine receptor agonist, on component processes of working memory. Psychopharmacology (Berl) 180(4):644–653

    Article  CAS  Google Scholar 

  138. Gibbs SE, D’Esposito M (2006) A functional magnetic resonance imaging study of the effects of pergolide, a dopamine receptor agonist, on component processes of working memory. Neuroscience, 139:359–71

    Google Scholar 

  139. Cools R, Sheridan M, Jacobs E, D’Esposito M (2007) Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. J Neurosci 27(20):5506–5514

    Article  CAS  PubMed  Google Scholar 

  140. Kastner S, Pinsk MA (2004) Visual attention as a multilevel selection process. Cogn Affect Behav Neurosci 4(4):483–500

    Article  PubMed  Google Scholar 

  141. Gazzaley A, Cooney JW, McEvoy K, Knight RT, D’Esposito M (2005) Top-down enhancement and suppression of the magnitude and speed of neural activity. J Cogn Neurosci 17(3):507–517

    Article  PubMed  Google Scholar 

  142. Arnemann KL, Chen AJW, Novakovic-Agopian T, Gratton C, Nomura EM, D'Esposito M (2015) Functional brain network modularity predicts response to cognitive training after brain injury. Neurology 84:1568–74

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chen AJW, Novakovic-Agopian T, Nycum TJ, Song S, Turner G, Rome S, Abrams G, D’Esposito M (2011) Training of goal-directed attention regulation enhances control over neural processing for individuals with brain injury. Brain 134(5):1541–1554

    Article  PubMed  Google Scholar 

  144. Poldrack RA (2000) Imaging brain plasticity: conceptual and methodological issues – a theoretical review. Neuroimage 12(1):1–13

    Article  CAS  PubMed  Google Scholar 

  145. Aron AR, Gluck MA, Poldrack RA (2006) Long-term test-retest reliability of functional MRI in a classification learning task. Neuroimage 29(3):1000–1006

    Article  PubMed  Google Scholar 

  146. Wei X, Yoo SS, Dickey CC, Zou KH, Guttmann CR, Panych LP (2004) Functional MRI of auditory verbal working memory: long-term reproducibility analysis. Neuroimage 21(3):1000–1008

    Article  PubMed  Google Scholar 

  147. Yoo SS, Wei X, Dickey CC, Guttmann CR, Panych LP (2005) Long-term reproducibility analysis of fMRI using hand motor task. Int J Neurosci 115(1):55–77

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D’Esposito M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

D’Esposito, M., Kayser, A., Chen, A. (2016). Functional MRI: Applications in Cognitive Neuroscience. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 119. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-5611-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-5611-1_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-5609-8

  • Online ISBN: 978-1-4939-5611-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics