Skip to main content

Accounting Artifacts in High-Throughput Toxicity Assays

  • Protocol
  • First Online:
High-Throughput Screening Assays in Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1473))

Abstract

Compound activity identification is the primary goal in high-throughput screening (HTS) assays. However, assay artifacts including both systematic (e.g., compound auto-fluorescence) and nonsystematic (e.g., noise) complicate activity interpretation. In addition, other than the traditional potency parameter, half-maximal effect concentration (EC50), additional activity parameters (e.g., point-of-departure, POD) could be derived from HTS data for activity profiling. A data analysis pipeline has been developed to handle the artifacts and to provide compound activity characterization with either binary or continuous metrics. This chapter outlines the steps in the pipeline using Tox21 glucocorticoid receptor (GR) β-lactamase assays, including the formats to identify either agonists or antagonists, as well as the counter-screen assays for identifying artifacts as examples. The steps can be applied to other lower-throughput assays with concentration-response data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macarron R, Banks MN, Bojanic D et al (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10:188–195. doi:10.1038/nrd3368

    Article  CAS  PubMed  Google Scholar 

  2. Judson RS, Houck KA, Kavlock RJ et al (2009) In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ Health Perspect 118:485–492. doi:10.1289/ehp.0901392

    Article  PubMed Central  Google Scholar 

  3. Tice RR, Austin CP, Kavlock RJ, Bucher JR (2013) Improving the human hazard characterization of chemicals: a Tox21 update. Environ Health Perspect 121:756–765. doi:10.1289/ehp.1205784

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shockley KR (2014) Quantitative high-throughput screening data analysis: challenges and recent advances. Drug Discov Today. doi:10.1016/j.drudis.2014.10.005

    PubMed  PubMed Central  Google Scholar 

  5. Sedykh A, Zhu H, Tang H et al (2011) Use of in vitro HTS-derived concentration–response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Environ Health Perspect 119:364–370. doi:10.1289/ehp.1002476

    Article  CAS  PubMed  Google Scholar 

  6. Simeonov A, Jadhav A, Thomas CJ et al (2008) Fluorescence spectroscopic profiling of compound libraries. J Med Chem 51:2363–2371. doi:10.1021/jm701301m

    Article  CAS  PubMed  Google Scholar 

  7. Imbert P-E, Unterreiner V, Siebert D et al (2007) Recommendations for the reduction of compound artifacts in time-resolved fluorescence resonance energy transfer assays. Assay Drug Dev Technol 5:363–372. doi:10.1089/adt.2007.073

    Article  CAS  PubMed  Google Scholar 

  8. Thorne N, Shen M, Lea WA et al (2012) Firefly luciferase in chemical biology: a compendium of inhibitors, mechanistic evaluation of chemotypes, and suggested use as a reporter. Chem Biol 19:1060–1072. doi:10.1016/j.chembiol.2012.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feng BY, Simeonov A, Jadhav A et al (2007) A high-throughput screen for aggregation-based inhibition in a large compound library. J Med Chem 50:2385–2390. doi:10.1021/jm061317y

    Article  CAS  Google Scholar 

  10. Hsieh J-H, Sedykh A, Huang R et al (2015) A data analysis pipeline accounting for artifacts in Tox21 quantitative high-throughput screening assays. J Biomol Screen 1087057115581317. doi: 10.1177/1087057115581317

    Google Scholar 

  11. Sedykh A (2015) Curvep. https://github.com/sedykh/curvep. Accessed 3 June 2016.

  12. Qureshi SA (2007) Beta-lactamase: an ideal reporter system for monitoring gene expression in live eukaryotic cells. BioTechniques 42:91–96

    Article  CAS  PubMed  Google Scholar 

  13. Huang R, Xia M, Cho M-H et al (2011) Chemical genomics profiling of environmental chemical modulation of human nuclear receptors. Environ Health Perspect 119:1142–1148. doi:10.1289/ehp.1002952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Filer DL, Kothiya P, Setzer WR et al (2015) EPA pipeline overview. https://www.epa.gov/sites/production/files/2015-08/documents/pipeline_overview.pdf. Accessed 25 March 2016

  15. Behl M, Hsieh J-H, Shafer TJ, Mundy WR, Rice JR, Boyd WA et al Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity. Neurotoxicology and Teratology; doi:10.1016/j.ntt.2015.09.003

    Google Scholar 

  16. Huang R, Sakamuru S, Martin MT et al (2014) Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Sci Rep. doi:10.1038/srep05664

    Google Scholar 

  17. Judson RS (2014) ToxCast data processing overview. http://epa.gov/comptox/download_files/chemical_prioritization/Judson_CoP_Dec2014.pdf.Accessed 14 Aug. 2015

  18. Schorpp K, Rothenaigner I, Salmina E et al (2014) Identification of small-molecule frequent hitters from alphascreen high-throughput screens. J Biomol Screen 19:715–726. doi:10.1177/1087057113516861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740. doi:10.1021/jm901137j

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-Hua Hsieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hsieh, JH. (2016). Accounting Artifacts in High-Throughput Toxicity Assays. In: Zhu, H., Xia, M. (eds) High-Throughput Screening Assays in Toxicology. Methods in Molecular Biology, vol 1473. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6346-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6346-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6344-7

  • Online ISBN: 978-1-4939-6346-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics