Skip to main content

A Proximity-Based Programmable DNA Nanoscale Assembly Line

  • Protocol
  • First Online:
3D DNA Nanostructure

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1500))

Abstract

The assembly line is one of the key features of industrial production on the macroscopic scale, allowing programmability and sequential addition of parts to a final product. In this chapter, we use DNA to extend this notion to the nanoscale by the judicious combination of three DNA-based components: a DNA origami tile that provides a framework and track for the assembly process, three two-state DNA cassettes that can be programmed to donate cargo and are attached to the tile, and a DNA walker that can move on the track to collect cargo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seeman NC, Lukeman PS (2005) Nucleic acid nanostructures. Rpts Prog Phys 68:237–270

    Article  CAS  Google Scholar 

  2. Gu H, Chao J, Xiao SJ, Seeman NC (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465:202–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yan H, Zhang X, Shen Z, Seeman NC (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415:62–65

    Article  CAS  PubMed  Google Scholar 

  4. Ding B, Seeman NC (2006) Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 314:1583–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gu H, Chao J, Xiao SJ, Seeman NC (2009) Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nat Nanotech 4:245–249

    Article  CAS  Google Scholar 

  6. Rothemund PWK (2006) Scaffolded DNA origami for nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  PubMed  Google Scholar 

  7. Sherman WB, Seeman NC (2004) A precisely controlled DNA bipedal walking device. Nano Lett 4:1203–1207

    Article  CAS  Google Scholar 

  8. Shin JS, Pierce NA (2004) A synthetic DNA walker for molecular transport. J Am Chem Soc 126:10834–10835

    Article  CAS  PubMed  Google Scholar 

  9. Bath J, Green SJ, Allen KE, Turberfield AJ (2009) Mechanism for a directional, processive and reversible DNA walker. Small 5:1513–1516

    Article  CAS  PubMed  Google Scholar 

  10. Omabegho T, Sha R, Seeman NC (2009) A bipedal DNA Brownian motor with coordinated legs. Science 324:67–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu D, Wang W, Deng Z, Walulu R, Mao C (2004) Tensegrity: construction of rigid DNA triangles with flexible four-arm junctions. J Am Chem Soc 126:2324–2325

    Article  CAS  PubMed  Google Scholar 

  12. Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Newmann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608

    Article  CAS  PubMed  Google Scholar 

  13. Seeman NC (1990) De novo design of sequences for nucleic acid structure engineering. J Biomol Struct Dyn 8:573–581

    Article  CAS  PubMed  Google Scholar 

  14. Ke Y, Lindsay S, Chang Y, Liu Y, Yan H (2008) Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science 319:180–183

    Article  CAS  PubMed  Google Scholar 

  15. Ding B, Sha R, Seeman NC (2004) Pseudohexagonal 2D DNA crystals from double crossover cohesion. J Am Chem Soc 126:10230–10231

    Article  CAS  PubMed  Google Scholar 

  16. Constantinou PE, Wang T, Kopatsch J, Israel LB, Zhang X, Ding B, Sherman WB, Wang X, Zheng J, Sha R, Seeman NC (2006) Double cohesion in structural DNA nanotechnology. Organic Biomol Chem 4:3414–3419

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.G. thank members of the Seeman laboratory for helpful discussions. H.G. was supported by China “Thousand Youth Talents” (KHH1340004) and Fudan University startup (JJH1340110) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhou Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, X., Ding, X., Zou, J., Gu, H. (2017). A Proximity-Based Programmable DNA Nanoscale Assembly Line. In: Ke, Y., Wang, P. (eds) 3D DNA Nanostructure. Methods in Molecular Biology, vol 1500. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6454-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6454-3_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6452-9

  • Online ISBN: 978-1-4939-6454-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics