Skip to main content

EEG Indices of Cortical Network Formation and Their Relevance for Studying Variance in Subjective Experience and Behavior

  • Protocol
  • First Online:
In Vivo Neuropharmacology and Neurophysiology

Part of the book series: Neuromethods ((NM,volume 121))

  • 1143 Accesses

Abstract

The EEG is a highly sensitive marker for brain state, such as development, different states of consciousness, and neuropsychiatric disorders. The classical spectral quantification of EEG suffers from requiring analysis epochs of 1 s or more that may contain several, and potentially quite different brain-functional states. Based on the identification of subsecond time periods of stable scalp electric fields, EEG microstate analysis provides information about brain state on a time scale that is compatible with the speed of human information processing. The present chapter reviews the conceptual underpinnings of EEG microstate analysis, introduces the methodology, and presents an overview of the available empirical findings that link EEG microstates to subjective experience and behavior under normal and abnormal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuster J (1995) Memory in the cerebral cortex. MIT Press, Cambridge, MA

    Google Scholar 

  2. Fuster J (2003) Cortex and mind: unifying cognition. Oxford University Press, New York, NY

    Google Scholar 

  3. Koukkou M, Lehmann D (1983) Dreaming: the functional state-shift hypothesis. A neuropsychophysiological model. Br J Psychiatry 142:221–231

    Article  CAS  PubMed  Google Scholar 

  4. Koukkou M, Lehmann D (1998) Ein systemtheoretisch orientiertes Modell der Funktionen des menschlichen Gehirns und die Onthogenese des Verhaltens. In: Koukkou M, Leuzinger-Bohleber M, Mertens W (eds) Erinnerung von Wirklichkeiten. Psychoanalyse und Neurowissenschaften im Dialog. Cotta Verlag Internationale Psychoanalyse (VIP), Stuttgart, pp 287–415

    Google Scholar 

  5. Koukkou M, Lehmann D (2006) Experience-dependent brain plasticity: a key concept for studying nonconscious decisions, International congress series. Elsevier, Amsterdam, pp 45–52

    Google Scholar 

  6. Koukkou M, Lehmann D (2010) Experience-dependent brain plasticity and the normal or neurotic development of individuals. In: Issidorides-Radovich M, Vaslamatzis G (eds) Dialogue of psychoanalysis and neurobiology: theoretical and therapeutic aspects. BETA Iatrikes Ekdosis, Athens, pp 111–157

    Google Scholar 

  7. Hebb DO (1949) The organization of behavior. Wiley, New York, NY

    Google Scholar 

  8. Hebb DO (1980) Essay on mind. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  9. Ohman A (1979) The orienting response, attention, and learning: an information-processing perspective. In: Kimmel HD, van Olst EH, Orlebeke JF (eds) The orienting reflex in humans. Erlbaum, Hillsdale, NJ, pp 443–472

    Google Scholar 

  10. Donchin E, Coles MG (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:357–374

    Article  Google Scholar 

  11. Lehmann D (1971) Multichannel topography of human alpha EEG fields. Electroencephalogr Clin Neurophysiol 31:439–449

    Article  CAS  PubMed  Google Scholar 

  12. Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48:609–621

    Article  CAS  PubMed  Google Scholar 

  13. Lehmann D, Ozaki H, Pal I (1987) EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 67:271–288

    Article  CAS  PubMed  Google Scholar 

  14. Wackermann J, Lehmann D, Michel CM, Strik WK (1993) Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. Int J Psychophysiol 14:269–283

    Article  CAS  PubMed  Google Scholar 

  15. Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42:658–665

    Article  CAS  PubMed  Google Scholar 

  16. Koenig T, Lehmann D, Merlo MC, Kochi K, Hell D, Koukkou M (1999) A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest. Eur Arch Psychiatry Clin Neurosci 249:205–211

    Article  CAS  PubMed  Google Scholar 

  17. Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage 16:41–48

    Article  PubMed  Google Scholar 

  18. Michel C, Koenig T, Brandeis D (2009) Electrical neuroimaging in the time domain. In: Michel CM, Koenig T, Brandeis D, Gianotti LRR, Wackermann J (eds) Electrical neuroimaging. Cambridge University Press, Cambridge, pp 111–143

    Chapter  Google Scholar 

  19. Michel CM, Murray MM (2012) Towards the utilization of EEG as a brain imaging tool. Neuroimage 61:371–385

    Article  PubMed  Google Scholar 

  20. Lehmann D, Strik W, Henggeler B, Koenig T, Koukkou M (1998) Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. Int J Psychophysiol 29:1–11

    Article  CAS  PubMed  Google Scholar 

  21. Khanna A, Pascual-Leone A, Michel CM, Farzan F (2015) Microstates in resting-state EEG: current status and future directions. Neurosci Biobehav Rev 49:105–113

    Article  PubMed  Google Scholar 

  22. Lehmann D, Faber PL, Galderisi S, Herrmann WM, Kinoshita T, Koukkou M, Mucci A, Pascual-Marqui RD, Saito N, Wackermann J, Winterer G, Koenig T (2005) EEG microstate duration and syntax in acute, medication-naive, first-episode schizophrenia: a multi-center study. Psychiatry Res 138:141–156

    Article  PubMed  Google Scholar 

  23. Britz J, Van De Ville D, Michel CM (2010) BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage 52:1162–1170

    Article  PubMed  Google Scholar 

  24. Lehmann D, Pascual-Marqui RD, Strik WK, Koenig T (2010) Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis. Neuroimage 49:1073–1079

    Article  PubMed  Google Scholar 

  25. Koenig T, Kochi K, Lehmann D (1998) Event-related electric microstates of the brain differ between words with visual and abstract meaning. Electroencephalogr Clin Neurophysiol 106:535–546

    Article  CAS  PubMed  Google Scholar 

  26. Bressler SL (1995) Large-scale cortical networks and cognition. Brain research. Brain Res Rev 20:288–304

    Article  CAS  PubMed  Google Scholar 

  27. Changeux JP, Michel CM (2004) Mechanism of neural integration at the brain-scale level. In: Grillner S, Graybiel AM (eds) Microcircuits. MIT Press, Cambridge, MA, pp 347–370

    Google Scholar 

  28. Cho SB, Baars BJ, Newman J (1997) A neural global workspace model for conscious attention. Neural Netw 10:1195–1206

    Article  PubMed  Google Scholar 

  29. Dehaene S, Naccache L (2001) Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79:1–37

    Article  CAS  PubMed  Google Scholar 

  30. Van De Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci U S A 107:18179–18184

    Article  PubMed  Google Scholar 

  31. Brodbeck V, Kuhn A, Von Wegner F, Morzelewski A, Tagliazucchi E, Borisov S, Michel CM, Laufs H (2012) EEG microstates of wakefulness and NREM sleep. Neuroimage 62:2129–2139

    Article  PubMed  Google Scholar 

  32. Katayama H, Gianotti LR, Isotani T, Faber PL, Sasada K, Kinoshita T, Lehmann D (2007) Classes of multichannel EEG microstates in light and deep hypnotic conditions. Brain Topogr 20:7–14

    Article  PubMed  Google Scholar 

  33. Milz P, Faber PL, Lehmann D, Koenig T, Kochi K, Pascual-Marqui RD (2016) The functional significance of EEG microstates-Associations with modalities of thinking. Neuroimage 125:643–656

    Article  CAS  PubMed  Google Scholar 

  34. Diaz Hernandez L, Rieger K, Baenninger A, Brandeis D, Koenig T (2016) Towards using microstate-neurofeedback for the treatment of psychotic symptoms in schizophrenia. A feasibility study in healthy participants. Brain Topogr 29:308

    Article  PubMed  Google Scholar 

  35. Megevand P, Quairiaux C, Lascano AM, Kiss JZ, Michel CM (2008) A mouse model for studying large-scale neuronal networks using EEG mapping techniques. Neuroimage 42:591–602

    Article  PubMed  Google Scholar 

  36. Menon V (2013) Developmental pathways to functional brain networks: emerging principles. Trends Cogn Sci 17:627–640

    Article  PubMed  Google Scholar 

  37. Zielinski BA, Gennatas ED, Zhou J, Seeley WW (2010) Network-level structural covariance in the developing brain. Proc Natl Acad Sci U S A 107:18191–18196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dennis EL, Thompson PM (2013) Mapping connectivity in the developing brain. Int J Dev Neurosci 31:525–542

    Article  CAS  PubMed  Google Scholar 

  39. Lehmann D (2013) Consciousness: microstates of the brain’s electric field as atoms of thought and emotion. In: Pereira A, Lehmann D (eds) The unity of mind, brain and world. Cambridge University Press, Cambridge, pp 191–218

    Chapter  Google Scholar 

  40. Wiedemann G, Stevens A, Pauli P, Dengler W (1998) Decreased duration and altered topography of electroencephalographic microstates in patients with panic disorder. Psychiatry Res 84:37–48

    Article  CAS  PubMed  Google Scholar 

  41. Kikuchi M, Koenig T, Munesue T, Hanaoka A, Strik W, Dierks T, Koshino Y, Minabe Y (2011) EEG microstate analysis in drug-naive patients with panic disorder. PLoS One 6:e22912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dierks T, Jelic V, Julin P, Maurer K, Wahlund LO, Almkvist O, Strik WK, Winblad B (1997) EEG-microstates in mild memory impairment and Alzheimer’s disease: possible association with disturbed information processing. J Neural Transm 104:483–495

    Article  CAS  PubMed  Google Scholar 

  43. Strik WK, Chiaramonti R, Muscas GC, Paganini M, Mueller TJ, Fallgatter AJ, Versari A, Zappoli R (1997) Decreased EEG microstate duration and anteriorisation of the brain electrical fields in mild and moderate dementia of the Alzheimer type. Psychiatry Res 75:183–191

    Article  CAS  PubMed  Google Scholar 

  44. Nishida K, Yoshimura M, Isotani T, Yoshida T, Kitaura Y, Saito A, Mii H, Kato M, Takekita Y, Suwa A, Morita S, Kinoshita T (2011) Differences in quantitative EEG between frontotemporal dementia and Alzheimer’s disease as revealed by LORETA. Clin Neurophysiol 122:1718–1725

    Article  CAS  PubMed  Google Scholar 

  45. Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15:483–506

    Article  PubMed  Google Scholar 

  46. Kindler J, Hubl D, Strik WK, Dierks T, Koenig T (2011) Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates. Clin Neurophysiol 122:1179–1182

    Article  CAS  PubMed  Google Scholar 

  47. Kikuchi M, Koenig T, Wada Y, Higashima M, Koshino Y, Strik W, Dierks T (2007) Native EEG and treatment effects in neuroleptic-naive schizophrenic patients: time and frequency domain approaches. Schizophr Res 97:163–172

    Article  PubMed  Google Scholar 

  48. Lehmann D, Wackermann J, Michel CM, Koenig T (1993) Space-oriented EEG segmentation reveals changes in brain electric field maps under the influence of a nootropic drug. Psychiatry Res 50:275–282

    Article  CAS  PubMed  Google Scholar 

  49. Kinoshita T, Strik WK, Michel CM, Yagyu T, Saito M, Lehmann D (1995) Microstate segmentation of spontaneous multichannel EEG map series under diazepam and sulpiride. Pharmacopsychiatry 28:51–55

    Article  CAS  PubMed  Google Scholar 

  50. Yoshimura M, Koenig T, Irisawa S, Isotani T, Yamada K, Kikuchi M, Okugawa G, Yagyu T, Kinoshita T, Strik W, Dierks T (2007) A pharmaco-EEG study on antipsychotic drugs in healthy volunteers. Psychopharmacology (Berl) 191:995–1004

    Article  CAS  Google Scholar 

  51. Andreou C, Faber PL, Leicht G, Schoettle D, Polomac N, Hanganu-Opatz IL, Lehmann D, Mulert C (2014) Resting-state connectivity in the prodromal phase of schizophrenia: insights from EEG microstates. Schizophr Res 152:513–520

    Article  PubMed  Google Scholar 

  52. Strelets V, Faber PL, Golikova J, Novototsky-Vlasov V, Koenig T, Gianotti LR, Gruzelier JH, Lehmann D (2003) Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations. Clin Neurophysiol 114:2043–2051

    Article  CAS  PubMed  Google Scholar 

  53. Tomescu MI, Rihs TA, Becker R, Britz J, Custo A, Grouiller F, Schneider M, Debbane M, Eliez S, Michel CM (2014) Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: a vulnerability marker of schizophrenia? Schizophr Res 157:175–181

    Article  PubMed  Google Scholar 

  54. Tomescu M, Rihs TA, Roinishvili M, Karahanoglu FI, Schneider M, Menghetti S, Van De Ville D, Brand A, Chkonia E, Eliez S, Herzog MH, Michel CM, Cappe C (2015) Schizophrenia patients and 22q11.2 deletion syndrome adolescents at risk express the same deviant patterns of resting state EEG microstates: a candidate endophenotype of schizophrenia. Schizophrenia Research. Cognition 2:159

    Google Scholar 

  55. Rieger K, Diaz Hernandez L, Baenninger A, Koenig T (2016) 15 years of microstate research in schizophrenia – where are we? A meta-analysis. Front Psychiatry 7:22

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yuan H, Zotev V, Phillips R, Drevets WC, Bodurka J (2012) Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks. Neuroimage 60:2062–2072

    Article  PubMed  Google Scholar 

  57. Pasqual-Marqui RD, Lehmann D, Faber P, Milz P, Kochi K, Yoshimura M, Nishida K, Isotani T, Kinoshita T (2014) The resting microstate networks (RMN). cortical distribution, dynamics, and frequency specific information flow. www.arxiv.org, 1411.1949:arXiv:1411.1194

  58. Rihs TA, Tomescu MI, Britz J, Rochas V, Custo A, Schneider M, Debbane M, Eliez S, Michel CM (2013) Altered auditory processing in frontal and left temporal cortex in 22q11.2 deletion syndrome: a group at high genetic risk for schizophrenia. Psychiatry Res 212:141–149

    Article  CAS  PubMed  Google Scholar 

  59. Lehmann D, Michel CM, Pal I, Pascual-Marqui RD (1994) Event-related potential maps depend on prestimulus brain electric microstate map. Int J Neurosci 74:239–248

    Article  CAS  PubMed  Google Scholar 

  60. Kondakor I, Lehmann D, Michel CM, Brandeis D, Kochi K, Koenig T (1997) Prestimulus EEG microstates influence visual event-related potential microstates in field maps with 47 channels. J Neural Transm (Vienna) 104:161–173

    Article  CAS  Google Scholar 

  61. Kondakor I, Pascual-Marqui RD, Michel CM, Lehmann D (1995) Event-related potential map differences depend on the prestimulus microstates. J Med Eng Technol 19:66–69

    Article  CAS  PubMed  Google Scholar 

  62. Muller TJ, Koenig T, Wackermann J, Kalus P, Fallgatter A, Strik W, Lehmann D (2005) Subsecond changes of global brain state in illusory multistable motion perception. J Neural Transm (Vienna) 112:565–576

    Article  Google Scholar 

  63. Britz J, Landis T, Michel CM (2009) Right parietal brain activity precedes perceptual alternation of bistable stimuli. Cereb Cortex 19:55–65

    Article  PubMed  Google Scholar 

  64. Kleinschmidt A, Buchel C, Zeki S, Frackowiak RS (1998) Human brain activity during spontaneously reversing perception of ambiguous figures. Proc Biol Sci 265:2427–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Britz J, Diaz Hernandez L, Ro T, Michel CM (2014) EEG-microstate dependent emergence of perceptual awareness. Front Behav Neurosci 8:163

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Koenig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Koenig, T., Tomescu, M.I., Rihs, T., Koukkou, M. (2017). EEG Indices of Cortical Network Formation and Their Relevance for Studying Variance in Subjective Experience and Behavior. In: Philippu, A. (eds) In Vivo Neuropharmacology and Neurophysiology. Neuromethods, vol 121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6490-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6490-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6488-8

  • Online ISBN: 978-1-4939-6490-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics