Skip to main content

Tools and Strategies for Analysis of Genome-Wide and Gene-Specific DNA Methylation Patterns

  • Protocol
  • First Online:
Oral Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1537))

Abstract

DNA methylation is a stable epigenetic mechanism that has important roles in the normal function of a cell and therefore also in disease etiology. Accurate measurements of normal and altered DNA methylation patterns are important to understand its role in regulating gene expression and cell phenotype. Remarkable progress has been made over the last decade in developing methodologies to investigate DNA methylation. The availability of next-generation sequencing has enabled the profiling of methylation marks at an unprecedented scale. Several methods that were previously used to profile locus-specific methylation have now been upgraded to a genome-wide scale using high-throughput sequencing or array platforms. However, because there are so many techniques available, researchers are faced with the challenge of assessing the potential merits or limitations of each technique and selecting the appropriate method for their analysis. In this review we discuss the strengths and weaknesses of genome-wide and gene-specific analysis tools for interrogating DNA methylation. We particularly focus on the design and analysis strategies involved. This review will provide a guideline for selecting the appropriate methods and tools for large-scale and locus-specific DNA methylation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404

    Article  CAS  PubMed  Google Scholar 

  2. Rollins RA, Haghighi F, Edwards JR, Das R, Zhang MQ, Ju J, Bestor TH (2006) Large-scale structure of genomic methylation patterns. Genome Res 16:157–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  CAS  PubMed  Google Scholar 

  4. Igarashi J, Muroi S, Kawashima H, Wang X, Shinojima Y, Kitamura E, Oinuma T, Nemoto N, Song F, Ghosh S, Held WA, Nagase H (2008) Quantitative analysis of human tissue-specific differences in methylation. Biochem Biophys Res Commun 376:658–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chatterjee A, Morison IM (2011) Monozygotic twins: genes are not the destiny? Bioinformation 7:369–370

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chatterjee A, Eccles MR (2015) DNA methylation and epigenomics: new technologies and emerging concepts. Genome Biol 16:103

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chatterjee A (2012) Conference scene: epigenetic regulation: from mechanism to intervention. Epigenomics 4:487–490

    Article  CAS  PubMed  Google Scholar 

  8. Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11:191–203

    Article  CAS  PubMed  Google Scholar 

  9. Plongthongkum N, Diep DH, Zhang K (2014) Advances in the profiling of DNA modifications: cytosine methylation and beyond. Nat Rev Genet 15:647–661

    Article  CAS  PubMed  Google Scholar 

  10. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rodger EJ, Chatterjee A, Morison IM (2014) 5-hydroxymethylcytosine: a potential therapeutic target in cancer. Epigenomics 6:503–514

    Article  CAS  PubMed  Google Scholar 

  12. Mukhopadhyay R, Yu W, Whitehead J, Xu J, Lezcano M, Pack S, Kanduri C, Kanduri M, Ginjala V, Vostrov A, Quitschke W, Chernukhin I, Klenova E, Lobanenkov V, Ohlsson R (2004) The binding sites for the chromatin insulator protein CTCF map to DNA methylation-free domains genome-wide. Genome Res 14:1594–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miura F, Ito T (2015) Highly sensitive targeted methylome sequencing by post-bisulfite adaptor tagging. DNA Res 22:13–18

    Article  CAS  PubMed  Google Scholar 

  14. Xi Y, Bock C, Muller F, Sun D, Meissner A, Li W (2012) RRBSMAP: a fast, accurate and user-friendly alignment tool for reduced representation bisulfite sequencing. Bioinformatics 28:430–432

    Article  CAS  PubMed  Google Scholar 

  15. Chatterjee A, Stockwell PA, Rodger EJ, Morison IM (2012) Comparison of alignment software for genome-wide bisulphite sequence data. Nucleic Acids Res 40, e79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA, Zhang L, Farmer AD, Bell CJ, Kim RW, May GD, Woodward JE, Caillier SJ, McElroy JP, Gomez R, Pando MJ, Clendenen LE, Ganusova EE, Schilkey FD, Ramaraj T, Khan OA, Huntley JJ, Luo S, Kwok PY, Wu TD, Schroth GP, Oksenberg JR, Hauser SL, Kingsmore SF (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464:1351–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF, Amoroso MW, Oakley DH, Gnirke A, Eggan K, Meissner A (2011) Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144:439–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gertz J, Varley KE, Reddy TE, Bowling KM, Pauli F, Parker SL, Kucera KS, Willard HF, Myers RM (2011) Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation. PLoS Genet 7, e1002228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gu H, Bock C, Mikkelsen TS, Jager N, Smith ZD, Tomazou E, Gnirke A, Lander ES, Meissner A (2010) Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods 7:133–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata K, Andrews SR, Kelsey G (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43:811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Steine EJ, Ehrich M, Bell GW, Raj A, Reddy S, van Oudenaarden A, Jaenisch R, Linhart HG (2011) Genes methylated by DNA methyltransferase 3b are similar in mouse intestine and human colon cancer. J Clin Invest 121:1748–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hartung T, Zhang L, Kanwar R, Khrebtukova I, Reinhardt M, Wang C, Therneau TM, Banck MS, Schroth GP, Beutler AS (2012) Diametrically opposite methylome-transcriptome relationships in high- and low-CpG promoter genes in postmitotic neural rat tissue. Epigenetics 7:421–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chatterjee A, Ozaki Y, Stockwell PA, Horsfield JA, Morison IM, Nakagawa S (2013) Mapping the zebrafish brain methylome using reduced representation bisulfite sequencing. Epigenetics 8:979–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chatterjee A, Stockwell PA, Horsfield JA, Morison IM, Nakagawa S (2014) Base-resolution DNA methylation landscape of zebrafish brain and liver. Genomics Data 2:342–344

    Article  PubMed  PubMed Central  Google Scholar 

  26. Boyle P, Clement K, Gu H, Smith ZD, Ziller M, Fostel JL, Holmes L, Meldrim J, Kelley F, Gnirke A, Meissner A (2012) Gel-free multiplexed reduced representation bisulfite sequencing for large-scale DNA methylation profiling. Genome Biol 13:R92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chatterjee A, Rodger EJ, Stockwell PA, Weeks RJ, Morison IM (2012) Technical considerations for reduced representation bisulfite sequencing with multiplexed libraries. J Biomed Biotech 2012:741542

    Article  Google Scholar 

  28. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL, Fan JB, Shen R (2011) High density DNA methylation array with single CpG site resolution. Genomics 98:288–295

    Article  CAS  PubMed  Google Scholar 

  29. Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LT, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500:477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bock C, Tomazou EM, Brinkman AB, Muller F, Simmer F, Gu H, Jager N, Gnirke A, Stunnenberg HG, Meissner A (2010) Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotech 28:1106–1114

    Article  CAS  Google Scholar 

  31. Matarese F, Carrillo-de Santa Pau E, Stunnenberg HG (2011) 5-Hydroxymethylcytosine: a new kid on the epigenetic block? Mol Syst Biol 7:562

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stockwell PA, Chatterjee A, Rodger EJ, Morison IM (2014) DMAP: differential methylation analysis package for RRBS and WGBS data. Bioinformatics 30:1814–1822

    Article  CAS  PubMed  Google Scholar 

  33. Xi Y, Li W (2009) BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10:232

    Article  PubMed  PubMed Central  Google Scholar 

  34. Harris EY, Ponts N, Levchuk A, Roch KL, Lonardi S (2010) BRAT: bisulfite-treated reads analysis tool. Bioinformatics 26:572–573

    Article  CAS  PubMed  Google Scholar 

  35. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics 27:1571–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen PY, Cokus SJ, Pellegrini M (2010) BS seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics 11:203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pedersen B, Hsieh TF, Ibarra C, Fischer RL (2011) MethylCoder: software pipeline for bisulfite-treated sequences. Bioinformatics 27:2435–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  39. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harris EY, Ponts N, Le Roch KG, Lonardi S (2012) BRAT-BW: efficient and accurate mapping of bisulfite-treated reads. Bioinformatics 28:1795–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kreck B, Marnellos G, Richter J, Krueger F, Siebert R, Franke A (2012) B-SOLANA: an approach for the analysis of two-base encoding bisulfite sequencing data. Bioinformatics 28:428–429

    Article  CAS  PubMed  Google Scholar 

  43. Campagna D, Telatin A, Forcato C, Vitulo N, Valle G (2013) PASS-bis: a bisulfite aligner suitable for whole methylome analysis of illumina and SOLiD reads. Bioinformatics 29:268–270

    Article  CAS  PubMed  Google Scholar 

  44. Lim JQ, Tennakoon C, Li G, Wong E, Ruan Y, Wei CL, Sung WK (2012) BatMeth: improved mapper for bisulfite sequencing reads on DNA methylation. Genome Biol 13:R82

    Article  PubMed  PubMed Central  Google Scholar 

  45. Morris TJ, Beck S (2015) Analysis pipelines and packages for Infinium HumanMethylation450 BeadChip (450 k) data. Methods 72:3–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dedeurwaerder S, Defrance M, Bizet M, Calonne E, Bontempi G, Fuks F (2014) A comprehensive overview of Infinium HumanMethylation450 data processing. Brief Bioinform 15:929–941

    Article  PubMed  Google Scholar 

  47. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, Gallinger S, Hudson TJ, Weksberg R (2013) Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 2013(8):203–209

    Article  Google Scholar 

  48. Price EM, Cotton AM, Lam LL, Farre P, Emberly E, Brown CJ, Robinson WP, Kobor MS (2013) Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics Chromatin 6:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang X, Mu W, Zhang W (2012) On the analysis of the illumina 450 k array data: probes ambiguously mapped to the human genome. Front Genet 3:73

    PubMed  PubMed Central  Google Scholar 

  50. Xu Z, Niu L, Li L, Taylor JA (2015) ENmix: a novel background correction method for Illumina HumanMethylation450 BeadChip. Nucleic Acids Res 44, e20

    Article  PubMed  PubMed Central  Google Scholar 

  51. Marabita F, Almgren M, Lindholm ME, Ruhrmann S, Fagerstrom-Billai F, Jagodic M, Sundberg CJ, Ekstrom TJ, Teschendorff AE, Tegner J, Gomez-Cabrero D (2013) An evaluation of analysis pipelines for DNA methylation profiling using the Illumina HumanMethylation450 BeadChip platform. Epigenetics 8:333–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Triche TJ Jr, Weisenberger DJ, Van Den Berg D, Laird PW, Siegmund KD (2013) Low-level processing of illumina infinium DNA methylation BeadArrays. Nucleic Acids Res 41, e90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Davis S, Du P, Bilke S, Triche T Jr, Bootwalla M (2015) Methylumi: handle illumina methylation data. R Package Version 2160 2015

    Google Scholar 

  54. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA (2014) Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics 30:1363–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, Beck S (2013) A beta-mixture quantile normalization method for correcting probe design bias in illumina infinium 450 k DNA methylation data. Bioinformatics 29:189–196

    Article  CAS  PubMed  Google Scholar 

  56. Pidsley R, Y Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC (2013) A data-driven approach to preprocessing illumina 450K methylation array data. BMC Genomics 14:293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang D, Yan L, Hu Q, Sucheston LE, Higgins MJ, Ambrosone CB, Johnson CS, Smiraglia DJ, Liu S (2012) IMA: an R package for high-throughput analysis of Illumina’s 450 K infinium methylation data. Bioinformatics 28:729–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, Lin SM (2010) Comparison of beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 11:587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhuang J, Widschwendter M, Teschendorff AE (2012) A comparison of feature selection and classification methods in DNA methylation studies using the illumina infinium platform. BMC Bioinformatics 13:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zou J, Lippert C, Heckerman D, Aryee M, Listgarten J (2014) Epigenome-wide association studies without the need for cell-type composition. Nat Methods 11:309–311

    Article  CAS  PubMed  Google Scholar 

  61. Houseman EA, Molitor J, Marsit CJ (2014) Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics 30:1431–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367

    Article  CAS  PubMed  Google Scholar 

  64. Stewart SK, Morris TJ, Guilhamon P, Bulstrode H, Bachman M, Balasubramanian S, Beck S (2015) oxBS-450 K: a method for analysing hydroxymethylation using 450 K BeadChips. Methods 72:9–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, Mason CE (2012) methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13:R87

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang HQ, Tuominen LK, Tsai CJ (2011) SLIM: a sliding linear model for estimating the proportion of true null hypotheses in datasets with dependence structures. Bioinformatics 27:225–231

    Article  PubMed  Google Scholar 

  67. Ehrlich M, Lacey M (2013) DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. Epigenomics 5:553–568

    Article  CAS  PubMed  Google Scholar 

  68. Bock C, Beerman I, Lien WH, Smith ZD, Gu H, Boyle P, Gnirke A, Fuchs E, Rossi DJ, Meissner A (2012) DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Mol Cell 47:633–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li Y, Zhu J, Tian G, Li N, Li Q, Ye M, Zheng H, Yu J, Wu H, Sun J, Zhang H, Chen Q, Luo R, Chen M, He Y, Jin X, Zhang Q, Yu C, Zhou G, Sun J, Huang Y, Zheng H, Cao H, Zhou X, Guo S, Hu X, Li X, Kristiansen K, Bolund L, Xu J, Wang W, Yang H, Wang J, Li R, Beck S, Wang J, Zhang X (2010) The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol 8, e1000533

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hansen KD, Langmead B, Irizarry RA (2012) BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol 13:R83

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hebestreit K, Dugas M, Klein HU (2013) Detection of significantly differentially methylated regions in targeted bisulfite sequencing data. Bioinformatics 29:1647–1653

    Article  CAS  PubMed  Google Scholar 

  72. Chatterjee A, Stockwell PA, Rodger EJ, Duncan EJ, Parry MF, Weeks RJ, Morison IM (2015) Genome-wide DNA methylation map of human neutrophils reveals widespread inter-individual epigenetic variation. Sci Rep 5:17328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Halachev K, Bast H, Albrecht F, Lengauer T, Bock C (2012) EpiExplorer: live exploration and global analysis of large epigenomic datasets. Genome Biol 13:R96

    Article  PubMed  PubMed Central  Google Scholar 

  75. Li S, Garrett-Bakelman F, Perl AE, Luger SM, Zhang C, To BL, Lewis ID, Brown AL, D’Andrea RJ, Ross ME et al (2014) Dynamic evolution of clonal epialleles revealed by methclone. Genome Biol 15:472

    Article  PubMed  PubMed Central  Google Scholar 

  76. Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tost J, Gut IG (2007) Analysis of gene-specific DNA methylation patterns by pyrosequencing technology. Methods Mol Biol 373:89–102

    CAS  PubMed  Google Scholar 

  78. Masser DR, Berg AS, Freeman WM (2013) Focused, high accuracy 5-methylcytosine quantitation with base resolution by benchtop next-generation sequencing. Epigenetics Chromatin 6:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Diep D, Plongthongkum N, Gore A, Fung HL, Shoemaker R, Zhang K (2012) Library-free methylation sequencing with bisulfite padlock probes. Nat Methods 9:270–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Komori HK, LaMere SA, Torkamani A, Hart GT, Kotsopoulos S, Warner J, Samuels ML, Olson J, Head SR, Ordoukhanian P, Lee PL, Link DR, Salomon DR (2011) Application of microdroplet PCR for large-scale targeted bisulfite sequencing. Genome Res 21:1738–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93:9821–9826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kristensen LS, Mikeska T, Krypuy M, Dobrovic A (2008) Sensitive melting analysis after real time-methylation specific PCR (SMART-MSP): high-throughput and probe-free quantitative DNA methylation detection. Nucleic Acids Res 36, e42

    Article  PubMed  PubMed Central  Google Scholar 

  83. Thomassin H, Kress C, Grange T (2004) MethylQuant: a sensitive method for quantifying methylation of specific cytosines within the genome. Nucleic Acids Res 32, e168

    Article  PubMed  PubMed Central  Google Scholar 

  84. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28, E32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hernandez HG, Tse MY, Pang SC, Arboleda H, Forero DA (2013) Optimizing methodologies for PCR-based DNA methylation analysis. Biotechniques 55:181–197

    Article  CAS  PubMed  Google Scholar 

  86. Coolen MW, Statham AL, Gardiner-Garden M, Clark SJ (2007) Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucleic Acids Res 35, e119

    Article  PubMed  PubMed Central  Google Scholar 

  87. Christensen BC, Kelsey KT, Zheng S, Houseman EA, Marsit CJ, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Kushi LH, Kwan ML, Wiencke JK (2010) Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake. PLoS Genet 6, e1001043

    Article  PubMed  PubMed Central  Google Scholar 

  88. Breitling LP, Yang R, Korn B, Burwinkel B, Brenner H (2011) Tobacco-smoking-related differential DNA methylation: 27 K discovery and replication. Am J Hum Genet 88:450–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, Schifano E, Booth J, van Putten W, Skrabanek L, Campagne F, Mazumdar M, Greally JM, Valk PJ, Löwenberg B, Delwel R, Melnick A (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17:13–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Farthing CR, Ficz G, Ng RK, Chan CF, Andrews S, Dean W, Hemberger M, Reik W (2008) Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 4, e1000116

    Article  PubMed  PubMed Central  Google Scholar 

  91. Liang P, Song F, Ghosh S, Morien E, Qin M, Mahmood S, Fujiwara K, Igarashi J, Nagase H, Held WA (2011) Genome-wide survey reveals dynamic widespread tissue-specific changes in DNA methylation during development. BMC Genomics 12:231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fuso A, Ferraguti G, Scarpa S, Ferrer I, Lucarelli M (2015) Disclosing bias in bisulfite assay: MethPrimers underestimate high DNA methylation. PLoS One 10, e0118318

    Article  PubMed  PubMed Central  Google Scholar 

  93. Park Y, Figueroa ME, Rozek LS, Sartor MA (2014) MethylSig: a whole genome DNA methylation analysis pipeline. Bioinformatics 30:2414–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dolzhenko E, Smith AD (2014) Using beta-binomial regression for high-precision differential methylation analysis in multifactor whole-genome bisulfite sequencing experiments. BMC Bioinformatics 15:215

    Article  PubMed  PubMed Central  Google Scholar 

  95. Assenov Y, Muller F, Lutsik P, Walter J, Lengauer T, Bock C (2014) Comprehensive analysis of DNA methylation data with RnBeads. Nat Methods 11:1138–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, Beck S (2014) ChAMP: 450 k chip analysis methylation pipeline. Bioinformatics 30:428–430

    Article  CAS  PubMed  Google Scholar 

  97. Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, V Lord R, Clark SJ, Molloy PL (2015) De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin 8:6

    PubMed  PubMed Central  Google Scholar 

  98. Phipson B, Maksimovic J, Oshlack A (2015) missMethyl: an R package for analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics 32:286–288

    PubMed  Google Scholar 

Download references

Acknowledgments

AC and MRE would like to thank New Zealand Institute for Cancer Research Trust, and IM would like to thank Gravida (formerly NRCGD) for their support. We would like to apologize to other research groups whose work we could not cite due to context and space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Chatterjee, A., Rodger, E.J., Morison, I.M., Eccles, M.R., Stockwell, P.A. (2017). Tools and Strategies for Analysis of Genome-Wide and Gene-Specific DNA Methylation Patterns. In: Seymour, G., Cullinan, M., Heng, N. (eds) Oral Biology. Methods in Molecular Biology, vol 1537. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6685-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6685-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6683-7

  • Online ISBN: 978-1-4939-6685-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics