Skip to main content

Purification and Analysis of Exosomes Released by Mature Cortical Neurons Following Synaptic Activation

  • Protocol
  • First Online:
Exosomes and Microvesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1545))

Abstract

Exosomes are vesicles released by most cells into their environment upon fusion of multivesicular endosomes with the plasma membrane. Exosomes are vesicles of 60–100 nm in diameter, floating in sucrose at a density of ~1.15 g/mL and carrying a number of marker proteins such as Alix, Tsg101, and Flotillin-1. We use dissociated cortical neurons cultured for around two weeks as exosome-releasing cells. In these conditions, neurons make mature synapses and form networks that can be activated by physiological stimuli. Here, we describe methods to culture differentiated cortical neurons, induce exosome release by increasing glutamatergic synapse activity, and purify exosomes by differential centrifugations followed by density separation using sucrose gradients. These protocols allow purification of neuronal exosomes released within minutes of activation of glutamatergic synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    Article  CAS  PubMed  Google Scholar 

  2. Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107:102–108

    Article  CAS  PubMed  Google Scholar 

  3. Kalra H, Simpson RJ, Ji H et al (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. Plos Biol 10(12):e1001450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lasser C, Alikhani VS, Ekstrom K et al (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9:9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vella LJ, Greenwood DL, Cappai R et al (2008) Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet Immunol Immunopathol 124:385–393

    Article  CAS  PubMed  Google Scholar 

  6. Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172

    Article  CAS  PubMed  Google Scholar 

  7. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    CAS  PubMed  Google Scholar 

  8. Wang G, Dinkins M, He Q et al (2012) Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4) potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem 287:21384–21395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Potolicchio I, Carven GJ, Xu X et al (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 175:2237–2243

    Article  CAS  PubMed  Google Scholar 

  10. Faure J, Lachenal G, Court M et al (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31:642–648

    Article  CAS  PubMed  Google Scholar 

  11. Fevrier B, Vilette D, Laude H, Raposo G (2005) Exosomes: a buble ride of prions? Traffic 6:10–17

    Article  CAS  PubMed  Google Scholar 

  12. Smalheiser NR (2007) Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol Direct 2:35

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kramer-Albers EM, Bretz N, Tenzer S et al (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl 1:1446–1461

    Article  PubMed  Google Scholar 

  14. Lopez-Verrilli MA, Picou F, Court FA (2013) Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia 61:1795–1806

    Article  PubMed  Google Scholar 

  15. Laulagnier K, Motta C, Hamdi S et al (2004) Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unsual membrane organization. Biochem J 380:161–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Savina A, Vidal M, Colombo MI (2002) The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci 115:2505–2515

    CAS  PubMed  Google Scholar 

  17. Vincent-Schneider H, Stumptner-Cuvelette P, Lankar D et al (2002) Exosomes bearing HLA-DR1 molecules need dendritic cells to efficiently stimulate specific T cells. Int Immunol 14:713–722

    Article  CAS  PubMed  Google Scholar 

  18. Bading H, Greenberg ME (1991) Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science 253:912–914

    Article  CAS  PubMed  Google Scholar 

  19. Ichikawa M, Muramoto K, Kobayashi K et al (1993) Formation and maturation of synapses in primary cultures or rat cerebral cortical cells: an electron microscopic study. Neurosci Res 16:95–103

    Article  CAS  PubMed  Google Scholar 

  20. Lachenal G, Pernet-Gallay K, Chivet M et al (2011) Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci 46:409–418

    Article  CAS  PubMed  Google Scholar 

  21. Beaudoin GM 3rd, Lee SH, Singh D et al (2012) Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc 7:1741–1754

    Article  CAS  PubMed  Google Scholar 

  22. Marks MS (2001) Determination of molecular size by zonal sedimentation analysis on sucrose density gradients. Curr Protoc Cell Biol Chapter 5:Unit 3

    Google Scholar 

Download references

Acknowledgment

K.L. was supported by “Fondation Plan Alzheimer.” C.J. and M.C. were supported by the “Ministère de l’Enseignement Supérieur et de la Recherche.” This work was funded by INSERM, Université Grenoble Alpes, and ANR (08-Blanc-0271 to R.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Sadoul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Laulagnier, K., Javalet, C., Hemming, F.J., Sadoul, R. (2017). Purification and Analysis of Exosomes Released by Mature Cortical Neurons Following Synaptic Activation. In: Hill, A. (eds) Exosomes and Microvesicles. Methods in Molecular Biology, vol 1545. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6728-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6728-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6726-1

  • Online ISBN: 978-1-4939-6728-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics