Skip to main content

Autofluorescence Spectroscopy for Monitoring Metabolism in Animal Cells and Tissues

  • Protocol
  • First Online:
Histochemistry of Single Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1560))

Abstract

Excitation of biological substrates with light at a suitable wavelength can give rise to a light emission in the ultraviolet (UV)-visible, near-infrared (IR) spectral range, called autofluorescence (AF). This is a widespread phenomenon, ascribable to the general presence of biomolecules acting as endogenous fluorophores (EFs) in the organisms of the whole life kingdom. In cytochemistry and histochemistry, AF is often an unwanted signal enhancing the background and affecting in particular the detection of low signals or rare positive labeling spots of exogenous markers. Conversely, AF is increasingly considered as a powerful diagnostic tool because of its role as an intrinsic biomarker directly dependent on the nature, amount, and microenvironment of the EFs, in a strict relationship with metabolic processes and structural organization of cells and tissues. As a consequence, AF carries multiple information that can be decrypted by a proper analysis of the overall emission signal, allowing the characterization and monitoring of cell metabolism in situ, in real time and in the absence of perturbation from exogenous markers. In the animal kingdom, AF studies at the cellular level take advantage of the essential presence of NAD(P)H and flavins, primarily acting as coenzymes at multiple steps of common metabolic pathways for energy production, reductive biosynthesis and antioxidant defense. Additional EFs such as vitamin A, porphyrins, lipofuscins, proteins, and neuromediators can be detected in different kinds of cells and bulk tissues, and can be exploited as photophysical biomarkers of specific normal or altered morphofunctional properties, from the retinoid storage in the liver to aging processes, metabolic disorders or cell transformation processes. The AF phenomenon involves all living system, and literature reports numerous investigations and diagnostic applications of AF, taking advantage of continuously developing self-assembled or commercial instrumentation and measuring procedures, making almost impossible to provide their comprehensive description. Therefore a brief summary of the history of AF observations and of the development of measuring systems is provided, along with a description of the most common EFs and their metabolic significance. From our direct experience, examples of AF imaging and microspectrofluorometric procedures performed under a single excitation in the near-UV range for cell and tissue metabolism studies are then reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasten FH (1989) Cell Structure and Function by Microspectrofluorometry. Cell Struct Funct by Microspectrofluorometry. doi:10.1016/B978-0-12-417760-4.50008-2

    Google Scholar 

  2. Rost BFWD (1995) Fluorescence microscopy, volume II. By F.W.D. Rost Cambridge University Press, Cambridge and New York. DOI: 10.1002/sca.4950180810

  3. Croce AC, Bottiroli G (2014) Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur J Histochem 58:2461. doi:10.4081/ejh.2014.2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wessendorf M (2004) Autofluorescence: Causes and Cures. http://www.uhnres.utoronto.ca/facilities/wcif/PDF/Autofluorescence.pdf 1–8.

  5. Johnston NW, Bienenstock J (1974) Abolition of non-specific fluorescent staining of eosinophils. J Immunol Methods 4:189–194. doi:10.1016/0022-1759(74)90060-X

    Article  CAS  PubMed  Google Scholar 

  6. Jayyosi C, Coret M, Bruyère-Garnier K (2016) Characterizing liver capsule microstructure via in situ bulge test coupled with multiphoton imaging. J Mech Behav Biomed Mater 54:229–243. doi:10.1016/j.jmbbm.2015.09.031

    Article  CAS  PubMed  Google Scholar 

  7. Croce AC, De Simone U, Vairetti M et al (2008) Liver autofluorescence properties in animal model under altered nutritional conditions. Photochem Photobiol Sci 7:1046–1053. doi:10.1039/B804836C

    Article  CAS  PubMed  Google Scholar 

  8. Croce AC, Santamaria G, De Simone U et al (2011) Naturally-occurring porphyrins in a spontaneous-tumour bearing mouse model. Photochem Photobiol Sci 10:1189–1195. doi:10.1039/c0pp00375a

    Article  CAS  PubMed  Google Scholar 

  9. Neumann M, Gabel D (2002) Simple Method for Reduction of Autofluorescence in Fluorescence Microscopy. J Histochem Cytochem 50:437–439. doi:10.1177/002215540205000315

    Article  CAS  PubMed  Google Scholar 

  10. Popper H, Gyorgy P, Goldblatt H (1944) Fluorescent material (ceroid) in experimental nutritional cirrhosis. Arch Path 37:161–168

    CAS  Google Scholar 

  11. Tappel AL (1973) Lipid peroxidation damage to cell components. Fed Proc 32:1870–1874

    CAS  PubMed  Google Scholar 

  12. Bidlack WR, Tappel AL (1973) Fluorescent products of phospholipids during lipid peroxidation. Lipids 8:203–207

    Article  CAS  PubMed  Google Scholar 

  13. Verbunt RJ, Fitzmaurice MA, Kramer JR et al (1992) Characterization of ultraviolet laser-induced autofluorescence of ceroid deposits and other structures in atherosclerotic plaques as a potential diagnostic for laser angiosurgery. Am Heart J 123:208–216

    Article  CAS  PubMed  Google Scholar 

  14. Phipps JE, Hatami N, Galis ZS et al (2011) A fluorescence lifetime spectroscopy study of matrix metalloproteinases-2 and −9 in human atherosclerotic plaque. J Biophotonics 4:650–658. doi:10.1002/jbio.201100042

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ottis P, Koppe K, Onisko B et al (2012) Human and rat brain lipofuscin proteome. Proteomics 12:2445–2454. doi:10.1002/pmic.201100668

    Article  CAS  PubMed  Google Scholar 

  16. Palmer DN, Husbands DR, Winter PJ et al (1986) Ceroid lipofuscinosis in sheep. I. Bis(monoacylglycero)phosphate, dolichol, ubiquinone, phospholipids, fatty acids, and fluorescence in liver lipopigment lipids. J Biol Chem 261:1766–1772

    CAS  PubMed  Google Scholar 

  17. Grattagliano I, Caraceni P, Calamita G et al (2008) Severe liver steatosis correlates with nitrosative and oxidative stress in rats. Eur J Clin Invest 38:523–530. doi:10.1111/j.1365-2362.2008.01963.x

    Article  CAS  PubMed  Google Scholar 

  18. Reiniers MJ, van Golen RF, van Gulik TM, Heger M (2014) Reactive oxygen and nitrogen species in steatotic hepatocytes: a molecular perspective on the pathophysiology of ischemia-reperfusion injury in the fatty liver. Antioxid Redox Signal 21:1119–1142. doi:10.1089/ars.2013.5486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Neuschwander-Tetri BA (2010) Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 52:774–788. doi:10.1002/hep.23719

    Article  PubMed  CAS  Google Scholar 

  20. Leamy AK, Egnatchik RA, Young JD (2013) Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res 52:165–174. doi:10.1016/j.plipres.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  21. Peverill W, Powell LW, Skoien R (2014) Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci 15:8591–638. doi:10.3390/ijms15058591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Duysen LN, Amesz J (1957) Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim Biophys Acta 24:19–26

    Article  Google Scholar 

  23. Chance B, Legallais V (1951) Rapid and Sensitive Spectrophotometry. II. A Stopped-Flow Attachment for a Stabilized Quartz Spectrophotometer. Rev Sci Instrum 22:627. doi: 10.1063/1.1746020

  24. Chance B, Legallais V, Schoener B (1962) Metabolically linked changes in fluorescence emission spectra of cortex of rat brain, kidney and adrenal gland. Nature 195:1073–1075

    Article  CAS  PubMed  Google Scholar 

  25. Chance B, Legallais V (1959) Differential Microfluorimeter for the Localization of Reduced Pyridine Nucleotide in Living Cells. Rev Sci Instrum 30:732. doi:10.1063/1.1716736

    Article  CAS  Google Scholar 

  26. Salmon JM, Kohen E, Viallet P et al (1982) Microspectrofluorometric approach to the study of free/bound NAD(P)H ratio as metabolic indicator in various cell types. Photochem Photobiol 36:585–593. doi:10.1111/j.1751-1097.1982.tb04420.x

    Article  CAS  PubMed  Google Scholar 

  27. Kunz WS, Kunz W (1985) Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria. Biochim Biophys Acta 841:237–246

    Article  CAS  PubMed  Google Scholar 

  28. Chance B, Legallais V (1963) A spectrofluorometer for recording of intracellular oxidation-reduction states. IEEE Trans Biomed Eng 10:40–47

    CAS  PubMed  Google Scholar 

  29. Chance B, Thorell B (1959) Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry. J Biol Chem 234:3044–3050

    CAS  PubMed  Google Scholar 

  30. Pollak N, Dölle C, Ziegler M (2007) The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. Biochem J 402:205–18. doi:10.1042/BJ20061638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakamura M, Bhatnagar A, Sadoshima J (2012) Overview of pyridine nucleotides review series. Circ Res 111:604–610. doi:10.1161/CIRCRESAHA.111.247924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reinert KC, Gao W, Chen G et al (2011) Cellular and metabolic origins of flavoprotein autofluorescence in the cerebellar cortex in vivo. Cerebellum 10:585–599. doi:10.1007/s12311-011-0278-x

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wyroba E, Bottiroli G, Giordano P (1981) Autofluorescence of axenically cultivated Paramecium aurelia. Acta Protozool 20:165–170

    Google Scholar 

  34. Nwaneshiudu A, Kuschal C, Sakamoto FH et al (2012) Introduction to confocal microscopy. J Invest Dermatol 132, e3. doi:10.1038/jid.2012.429

    Article  CAS  PubMed  Google Scholar 

  35. Georgakoudi I, Quinn KP (2012) Optical imaging using endogenous contrast to assess metabolic state. Annu Rev Biomed Eng 14:351–367. doi:10.1146/annurev-bioeng-071811-150108

    Article  CAS  PubMed  Google Scholar 

  36. König K (2000) Multiphoton microscopy in life sciences. J Microsc 200:83–104. doi:10.1046/j.1365-2818.2000.00738.x

    Article  PubMed  Google Scholar 

  37. Williams RM, Piston DW, Webb WW (1994) Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry. FASEB J 8:804–813

    CAS  PubMed  Google Scholar 

  38. Levitt JM, Hunter M, Mujat C et al (2007) Diagnostic cellular organization features extracted from autofluorescence images. Opt Lett 32:3305–3307. doi:10.1364/OL.32.003305

    Article  PubMed  Google Scholar 

  39. Koenig K, Schneckenburger H (1994) Laser-induced autofluorescence for medical diagnosis. J Fluoresc 4:17–40. doi:10.1007/BF01876650

    Article  CAS  PubMed  Google Scholar 

  40. Bird DK, Yan L, Vrotsos KM et al (2005) Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res 65:8766–73. doi:10.1158/0008-5472.CAN-04-3922

    Article  CAS  PubMed  Google Scholar 

  41. Skala MC, Riching KM, Gendron-Fitzpatrick A et al (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci U S A 104:19494–9. doi:10.1073/pnas.0708425104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82:2811–2825. doi:10.1016/S0006-3495(02)75621-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rice WL, Kaplan DL, Georgakoudi I (2010) Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation. PLoS One 5, e10075. doi:10.1371/journal.pone.0010075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gratton E, Breusegem S, Sutin J et al (2003) Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J Biomed Opt 8:381–390. doi:10.1117/1.1586704

    Article  PubMed  Google Scholar 

  45. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The Phasor Approach to Fluorescence Lifetime Imaging Analysis. Biophys J 94:L14–16. doi:10.1529/biophysj.107.120154

    Article  CAS  PubMed  Google Scholar 

  46. Levenson RM, Mansfield JR (2006) Multispectral imaging in biology and medicine: slices of life. Cytometry A 69:748–758. doi:10.1002/cyto.a.20319

    Article  PubMed  Google Scholar 

  47. Levenson RM, Fornari A, Loda M (2008) Multispectral imaging and pathology: seeing and doing more. Expert Opin Med Diagn 2:1067–1081. doi:10.1517/17530059.2.9.1067

    Article  PubMed  Google Scholar 

  48. Mansfield JR, Gossage KW, Hoyt CC, Levenson RM (2005) Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J Biomed Opt 10:41207. doi:10.1117/1.2032458

    Article  PubMed  CAS  Google Scholar 

  49. Rigacci L, Alterini R, Bernabei PA et al (2000) Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues. Photochem Photobiol 71:737–742. doi: 10.1562/0031-8655(2000)0710737MIAMFT2.0.CO2

  50. Carver GE, Locknar SA, Morrison WA et al (2014) High-speed multispectral confocal biomedical imaging. J Biomed Opt 19:36016. doi:10.1117/1.JBO.19.3.036016

    Article  PubMed  Google Scholar 

  51. Rey JW, Kiesslich R, Hoffman A (2014) New aspects of modern endoscopy. World J Gastrointest Endosc 6:334–344. doi:10.4253/wjge.v6.i8.334

    Article  PubMed  PubMed Central  Google Scholar 

  52. Monici M, Pratesi R, Bernabei P et al (1995) Natural fluorescence of white blood cells: spectroscopic and imaging study. J Photochem Photobiol B 30:29–37. doi:10.1016/1011-1344(95)07149-V

    Article  CAS  PubMed  Google Scholar 

  53. Klauke H, Minor T, Vollmar B et al (1998) Microscopic analysis of NADH fluorescence during aerobic and anaerobic liver preservation conditions: A noninvasive technique for assessment of hepatic metabolism. Cryobiology 36:108–114. doi:10.1006/cryo.1997.2068

    Article  CAS  PubMed  Google Scholar 

  54. Mayevsky A, Walden R, Pewzner E et al (2011) Mitochondrial function and tissue vitality: bench-to-bedside real-time optical monitoring system. J Biomed Opt 16:067004. doi:10.1117/1.3585674

    Article  PubMed  CAS  Google Scholar 

  55. Mayevsky A, Chance B (2007) Oxidation-reduction states of NADH in vivo: from animals to clinical use. Mitochondrion 7:330–339. doi:10.1016/j.mito.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  56. Thomson A (1981) An Introduction to Spectroscopy for Biochemists. Biochem Educ 9:35. doi:10.1016/0307-4412(81)90077-7

    Article  Google Scholar 

  57. Kunz WS (1986) Spectral properties of fluorescent flavoproteins of isolated rat liver mitochondria. FEBS Lett 195:92–96. doi:10.1016/0014-5793(86)80137-5

    Article  CAS  PubMed  Google Scholar 

  58. Scholz R, Thurman RG, Williamson JR et al (1969) Flavin and pyridine nucleotide oxidation-reduction changes in perfused rat liver. I Anoxia and subcellular localization of fluorescent flavoproteins J Biol Chem 244:2317–2324

    CAS  PubMed  Google Scholar 

  59. Croce AC, Bottiroli G (2015) New light in flavin autofluorescence. Eur J Histochem 59:2576. doi:10.4081/ejh.2015.2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A 89:1271–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hess B (1973) Organization of glycolysis: oscillatory and stationary control. Symp Soc Exp Biol 27:105–131

    CAS  PubMed  Google Scholar 

  62. Vishwasrao HD, Heikal AA, Kasischke KA, Webb WW (2005) Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy. J Biol Chem 280:25119–25126. doi:10.1074/jbc.M502475200

    Article  CAS  PubMed  Google Scholar 

  63. Vollmar B, Burkhardt M, Minor T et al (1997) High-resolution microscopic determination of hepatic NADH fluorescence for in vivo monitoring of tissue oxygenation during hemorrhagic shock and resuscitation. Microvasc Res 54:164–173. doi:10.1006/mvre.1997.2028

    Article  CAS  PubMed  Google Scholar 

  64. Croce AC, Ferrigno A, Vairetti M et al (2005) Autofluorescence spectroscopy of rat liver during experimental transplantation procedure. An approach for hepatic metabolism assessment. Photochem Photobiol Sci 4:583–590. doi:10.1039/b503586d

    Article  CAS  Google Scholar 

  65. Thorniley MS, Simpkin S, Fuller B et al (1995) Monitoring of surface mitochondrial NADH levels as an indication of ischemia during liver isograft transplantation. Hepatology 21:1602–1609. doi:10.1002/hep.1840210619

    Article  CAS  PubMed  Google Scholar 

  66. Meixensberger J, Herting B, Roggendorf W, Reichmann H (1995) Metabolic patterns in malignant gliomas. J Neurooncol 24:153–161

    Article  CAS  PubMed  Google Scholar 

  67. Long Z, Maltas J, Zatt MC et al (2015) The real-time quantification of autofluorescence spectrum shape for the monitoring of mitochondrial metabolism. J Biophotonics 8:247–257. doi:10.1002/jbio.201300207

    Article  CAS  PubMed  Google Scholar 

  68. Stringari C, Cinquin A, Cinquin O et al (2011) Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci U S A 108:13582–7. doi:10.1073/pnas.1108161108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Croce AC, Spano A, Locatelli D et al (1999) Dependence of fibroblast autofluorescence properties on normal and transformed conditions. Role of the metabolic activity. Photochem Photobiol 69:364–374. doi:10.1111/j.1751-1097.1999.tb03300.x

    Article  CAS  PubMed  Google Scholar 

  70. Santin G, Paulis M, Vezzoni P et al (2013) Autofluorescence properties of murine embryonic stem cells during spontaneous differentiation phases. Lasers Surg Med 45:597–607. doi:10.1002/lsm.22182

    Article  PubMed  Google Scholar 

  71. Croce AC, Ferrigno A, Piccolini VM et al (2014) Integrated autofluorescence characterization of a modified-diet liver model with accumulation of lipids and oxidative stress. Biomed Res Int 2014:803491. doi:10.1155/2014/803491

    Article  PubMed  PubMed Central  Google Scholar 

  72. Warburg O (1956) On the origin of cancer cells. Oncol 9:75–83. doi:10.1136/bmj.1.4082.694-a

    Article  CAS  Google Scholar 

  73. Villette S, Pigaglio-Deshayes S, Vever-Bizet C et al (2006) Ultraviolet-induced autofluorescence characterization of normal and tumoral esophageal epithelium cells with quantitation of NAD(P)H. Photochem Photobiol Sci 5:483–492. doi:10.1039/b514801d

    Article  CAS  PubMed  Google Scholar 

  74. Galeotti T, van Rossum GD, Mayer DH, Chance B (1970) On the fluorescence of NAD(P)H in whole-cell preparations of tumours and normal tissues. Eur J Biochem 17:485–496. doi:10.1111/j.1432-1033.1970.tb01191.x

    Article  CAS  PubMed  Google Scholar 

  75. Croce AC, Ferrigno A, Vairetti M et al (2004) Autofluorescence properties of isolated rat hepatocytes under different metabolic conditions. Photochem Photobiol Sci 3:920–926. doi:10.1039/B407358D

    Article  CAS  PubMed  Google Scholar 

  76. Viallet P, Salmon JM, Vigo J (1989) Cell Structure and Function by Microspectrofluorometry. Cell Struct Funct by Microspectrofluorometry. doi:10.1016/B978-0-12-417760-4.50020-3

    Google Scholar 

  77. Skala MC, Riching KM, Bird DK et al (2007) In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J Biomed Opt 12:024014. doi:10.1117/1.2717503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Shiino A, Haida M, Beauvoit B, Chance B (1999) Three-dimensional redox image of the normal gerbil brain. Neuroscience 91:1581–1585. doi:10.1016/S0306-4522(98)00670-8

    Article  CAS  PubMed  Google Scholar 

  79. Sato B, Tanaka A, Mori S et al (1995) Quantitative analysis of redox gradient within the rat liver acini by fluorescence images: effects of glucagon perfusion. Biochim Biophys Acta 1268:20–26

    Article  PubMed  Google Scholar 

  80. Chance B, Schoener B, Oshino R et al (1979) Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals J Biol Chem 254:4764–71

    CAS  PubMed  Google Scholar 

  81. Rattan SI, Keeler KD, Buchanan JH, Holliday R (1982) Autofluorescence as an index of ageing in human fibroblasts in culture. Biosci Rep 2:561–567

    Article  CAS  PubMed  Google Scholar 

  82. Riga D, Riga S (1995) Lipofuscin and ceroid pigments in aging and brain pathology. A review. I. Biochemical and morphological properties. Rom J Neurol Psychiatry 33:121–136

    CAS  PubMed  Google Scholar 

  83. Jung T, Bader N, Grune T (2007) Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci 1119:97–111. doi:10.1196/annals.1404.008

    Article  CAS  PubMed  Google Scholar 

  84. Santin G, Bottone MG, Malatesta M et al (2013) Regulated forms of cell death are induced by the photodynamic action of the fluorogenic substrate, Hypocrellin B-acetate. J Photochem Photobiol B Biol 125:90–97. doi:10.1016/j.jphotobiol.2013.05.006

    Article  CAS  Google Scholar 

  85. Wolman M (1980) Lipid pigments (chromolipids): their origin, nature, and significance. Pathobiol Annu 10:253–267

    CAS  PubMed  Google Scholar 

  86. Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33:611–619. doi:10.1016/S0891-5849(02)00959-0

    Article  CAS  PubMed  Google Scholar 

  87. Patková J, Vojtíšek M, Tůma J, et al. (2012) Evaluation of lipofuscin-like pigments as an index of lead-induced oxidative damage in the brain. Exp Toxicol Pathol Off J Gesellschaft für Toxikologische Pathol 64:51–56. doi: 10.1016/j.etp.2010.06.005

  88. Sparrow JR, Gregory-Roberts E, Yamamoto K et al (2012) The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res 31:121–135. doi:10.1016/j.preteyeres.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  89. Guha S, Liu J, Baltazar G et al (2014) Rescue of compromised lysosomes enhances degradation of photoreceptor outer segments and reduces lipofuscin-like autofluorescence in retinal pigmented epithelial cells. Adv Exp Med Biol 801:105–11. doi:10.1007/978-1-4614-3209-8_14

    Article  PubMed  PubMed Central  Google Scholar 

  90. Grossi E, Zaccheo D (1963) On the autofluorescence of specific granulations of eosinophilic leukocytes. Boll della Soc Ital di Biol Sper 39:421–424

    CAS  Google Scholar 

  91. Mayeno AN, Hamann KJ, Gleich GJ (1992) Granule-associated flavin adenine dinucleotide (FAD) is responsible for eosinophil autofluorescence. J Leukoc Biol 51:172–175

    CAS  PubMed  Google Scholar 

  92. Barnes D, Aggarwal S, Thomsen S et al (1993) A characterization of the fluorescent properties of circulating human eosinophils. Photochem Photobiol 58:297–303. doi:10.1111/j.1751-1097.1993.tb09565.x

    Article  CAS  PubMed  Google Scholar 

  93. Dorward DA, Lucas CD, Alessandri AL et al (2013) Technical advance: autofluorescence-based sorting: rapid and nonperturbing isolation of ultrapure neutrophils to determine cytokine production. J Leukoc Biol 94:193–202. doi:10.1189/jlb.0113040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Barni S, Vaccarone R, Bertone V et al (2002) Mechanisms of changes to the liver pigmentary component during the annual cycle (activity and hibernation) of Rana esculenta L. J Anat 200:185–94. doi:10.1046/j.0021-8782.2001.00011.x

    Article  PubMed  PubMed Central  Google Scholar 

  95. D’Ambrosio DN, Clugston RD, Blaner WS (2011) Vitamin A metabolism: an update. Nutrients 3:63–103. doi:10.3390/nu3010063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Vollmar B, Burkhardt M, Minor T et al (1997) In vivo analysis of hepatic NADH fluorescence. Methodological approach to exclude Ito-cell vitamin A-derived autofluorescence. Microvasc Res 454:83–89. doi:10.1006/mvre.1997.2028

    Google Scholar 

  97. Croce AC, De Simone U, Freitas I et al (2010) Human liver autofluorescence: an intrinsic tissue parameter discriminating normal and diseased conditions. Lasers Surg Med 42:371–378. doi:10.1002/lsm.20923

    Article  PubMed  Google Scholar 

  98. Taketani S, Ishigaki M, Mizutani A et al (2007) Heme synthase (ferrochelatase) catalyzes the removal of iron from heme and demetalation of metalloporphyrins. Biochemistry 46:15054–61. doi:10.1021/bi701460x

    Article  CAS  PubMed  Google Scholar 

  99. Sakaino M, Ishigaki M, Ohgari Y et al (2009) Dual mitochondrial localization and different roles of the reversible reaction of mammalian ferrochelatase. FEBS J 276:5559–70. doi:10.1111/j.1742-4658.2009.07248.x

    Article  CAS  PubMed  Google Scholar 

  100. Spike RC, Johnston HS, McGadey J et al (1986) Quantitative studies on the effects of hormones on structure and porphyrin biosynthesis in the harderian gland of the female golden hamster. II The time course of changes after ovariectomy J Anat 145:67–77

    CAS  PubMed  Google Scholar 

  101. Freitas I, Boncompagni E, Vaccarone R et al (2007) Iron accumulation in mammary tumor suggests a tug of war between tumor and host for the microelement. Anticancer Res 27:3059–3065

    CAS  PubMed  Google Scholar 

  102. Dougherty TJ, Gomer CJ, Henderson BW et al (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Berg K, Selbo PK, Weyergang A et al (2005) Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J Microsc 218:133–147. doi:10.1111/j.1365-2818.2005.01471.x

    Article  CAS  PubMed  Google Scholar 

  104. Bottiroli G, Ramponi R, Croce AC (1987) Quantitative analysis of intracellular behaviour of porphyrins. Photochem Photobiol 46:663–667. doi:10.1111/j.1751-1097.1987.tb04829.x

    Article  CAS  PubMed  Google Scholar 

  105. Dal Fante M, Bottiroli G, Spinelli P (1988) Behaviour of haematoporphyrin derivative in adenomas and adenocarcinomas of the colon: a microfluorometric study. Lasers Med Sci 3:165–171. doi:10.1007/BF02593808

    Article  Google Scholar 

  106. Agostinis P, Berg K, Cengel KA et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281. doi:10.3322/caac.20114

    Article  PubMed  PubMed Central  Google Scholar 

  107. Al-Salhi M, Masilamani V, Vijmasi T et al (2011) Lung cancer detection by native fluorescence spectra of body fluids--a preliminary study. J Fluoresc 21:637–645. doi:10.1007/s10895-010-0751-9

    Article  CAS  PubMed  Google Scholar 

  108. Lualdi M, Colombo A, Leo E et al (2007) Natural fluorescence spectroscopy of human blood plasma in the diagnosis of colorectal cancer: feasibility study and preliminary results. Tumori 93:567–571

    PubMed  Google Scholar 

  109. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. doi: 10.1007/978-0-387-46312-4

  110. Teale FW, Weber G (1957) Ultraviolet fluorescence of the aromatic amino acids. Biochem J 65:476–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schweizer J, Bowden PE, Coulombe PA et al (2006) New consensus nomenclature for mammalian keratins. J Cell Biol 174:169–174. doi:10.1083/jcb.200603161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Beuthan J, Minet O, Müller G (1998) Optical biopsy of cytokeratin and NADH in the tumor border zone. Ann N Y Acad Sci 838:150–710. doi:10.1111/j.1749-6632.1998.tb08196.x

    Article  CAS  PubMed  Google Scholar 

  113. Eyre DR, Paz MA, Gallop PM (1984) Cross-linking in collagen and elastin. Annu Rev Biochem 53:717–48. doi:10.1146/annurev.bi.53.070184.003441

    Article  CAS  PubMed  Google Scholar 

  114. Thornhill DP (1975) Separation of a series of chromophores and fluorophores present in elastin. Biochem J 147:215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Matcher SJ (2015) What can biophotonics tell us about the 3D microstructure of articular cartilage? Quant Imaging Med Surg 5:143–158. doi:10.3978/j.issn.2223-4292.2014.12.03

    PubMed  PubMed Central  Google Scholar 

  116. Marcu L (2000) Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy. Proc SPIE 3917:93–101. doi:10.1117/12.382720

    Article  CAS  Google Scholar 

  117. Fiarman GS, Nathanson MH, West AB et al (1995) Differences in laser-induced autofluorescence between adenomatous and hyperplastic polyps and normal colonic mucosa by confocal microscopy. Dig Dis Sci 40:1261–1268

    Article  CAS  PubMed  Google Scholar 

  118. Banerjee B, Rial NS, Renkoski T et al (2013) Enhanced visibility of colonic neoplasms using formulaic ratio imaging of native fluorescence. Lasers Surg Med 45:573–581. doi:10.1002/lsm.22186

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bottiroli G, Croce AC, Locatelli D et al (1995) Natural fluorescence of normal and neoplastic human colon: a comprehensive “ex vivo” study. Lasers Surg Med 16:48–60. doi:10.1002/lsm.1900160107

    Article  CAS  PubMed  Google Scholar 

  120. Sturm MB, Wang TD (2015) Emerging optical methods for surveillance of Barrett’s oesophagus. Gut 64:1816–23. doi:10.1136/gutjnl-2013-306706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nazeer SS, Sandhyamani S, Jayasree RS (2015) Optical diagnosis of the progression and reversal of CCl4-induced liver injury in rodent model using minimally invasive autofluorescence spectroscopy. Analyst 140:3773–3780. doi:10.1039/c4an01507j

    Article  CAS  PubMed  Google Scholar 

  122. Thorling CA, Crawford D, Burczynski FJ et al (2014) Multiphoton microscopy in defining liver function. J Biomed Opt 19:90901. doi:10.1117/1.JBO.19.9.090901

    Article  PubMed  CAS  Google Scholar 

  123. Thimm TN, Squirrell JM, Liu Y et al (2015) Endogenous Optical Signals Reveal Changes of Elastin and Collagen Organization During Differentiation of Mouse Embryonic Stem Cells. Tissue Eng Part C Methods 21:995–1004. doi:10.1089/ten.TEC.2014.0699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lutz V, Sattler M, Gallinat S et al (2012) Characterization of fibrillar collagen types using multi-dimensional multiphoton laser scanning microscopy. Int J Cosmet Sci 34:209–15. doi:10.1111/j.1468-2494.2012.00705.x

    Article  CAS  PubMed  Google Scholar 

  125. Toivola DM, Boor P, Alam C, Strnad P (2015) Keratins in health and disease. Curr Opin Cell Biol 32:73–81. doi:10.1016/j.ceb.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  126. Yamagishi S-I, Fukami K, Matsui T (2015) Evaluation of tissue accumulation levels of advanced glycation end products by skin autofluorescence: A novel marker of vascular complications in high-risk patients for cardiovascular disease. Int J Cardiol 185:263–268. doi:10.1016/j.ijcard.2015.03.167

    Article  PubMed  Google Scholar 

  127. Hu H, Jiang H, Ren H et al (2015) AGEs and chronic subclinical inflammation in diabetes: disorders of immune system. Diabetes Metab Res Rev 31:127–137. doi:10.1002/dmrr.2560

    Article  PubMed  CAS  Google Scholar 

  128. Arsov S, Graaff R, van Oeveren W et al (2014) Advanced glycation end-products and skin autofluorescence in end-stage renal disease: a review. Clin Chem Lab Med 52:11–20. doi:10.1515/cclm-2012-0832

    Article  CAS  PubMed  Google Scholar 

  129. Kaushalya SK, Nag S, Ghosh H et al (2008) A high-resolution large area serotonin map of a live rat brain section. Neuroreport 19:717–721. doi:10.1097/WNR.0b013e3282fd6946

    Article  PubMed  Google Scholar 

  130. Crespi F, Croce AC, Fiorani S et al (2004) Autofluorescence Spectrofluorometry of Central Nervous System (CNS) Neuromediators. Lasers Surg Med 34:39–47. doi:10.1002/lsm.10240

    Article  PubMed  Google Scholar 

  131. Balaji J, Desai R, Maiti S (2004) Live cell ultraviolet microscopy: a comparison between two- and three-photon excitation. Microsc Res Tech 63:67–71. doi:10.1002/jemt.10426

    Article  CAS  PubMed  Google Scholar 

  132. Botchway SW, Parker AW, Bisby RH, Crisostomo AG (2008) Real-time cellular uptake of serotonin using fluorescence lifetime imaging with two-photon excitation. Microsc Res Tech 71:267–73. doi:10.1002/jemt.20548

    Article  CAS  PubMed  Google Scholar 

  133. Obi-Tabot ET, Hanrahan LM, Cachecho R et al (1993) Changes in hepatocyte NADH fluorescence during prolonged hypoxia. J Surg Res 55:575–80. doi:10.1006/jsre.1993.1187

    Article  CAS  PubMed  Google Scholar 

  134. Ferrigno A, Richelmi P, Vairetti M (2013) Troubleshooting and improving the mouse and rat isolated perfused liver preparation. J Pharmacol Toxicol Methods 67:107–114. doi:10.1016/j.vascn.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  135. Abshagen K, Eipel C, Menger MD, Vollmar B (2006) Comprehensive analysis of the regenerating mouse liver: an in vivo fluorescence microscopic and immunohistological study. J Surg Res 134:354–62. doi:10.1016/j.jss.2006.01.002

    Article  PubMed  Google Scholar 

  136. Coremans JM, Ince C, Bruining HA, Puppels GJ (1997) (Semi-)quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart. Biophys J 72:1849–1860. doi:10.1016/S0006-3495(97)78831-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Croce AC, Ferrigno A, Di Pasqua LG et al (2016) Autofluorescence discrimination of metabolic fingerprints in nutritional and genetic fatty liver models. J Photochem Photobiol B 164:13-20. doi: 10.1016/j.jphotobiol.2016.09.015

  138. Croce AC, Ferrigno A, Bertone V et al (2016) fatty liver oxidative events monitored by autofluorescence optical diagnosis: Comparison between subnormothermic machine perfusion and conventional cold storage preservation. Hep Res. doi: 10.1111/hepr.12779

  139. Marquardt DW (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J Soc Ind Appl Math 11:431–441. doi:10.1137/0111030

    Article  Google Scholar 

  140. Hesse R, Chassé T, Szargan R (1999) Peak shape analysis of core level photoelectron spectra using UNIFIT for WINDOWS. Fresenius J Anal Chem 365:48–54. doi:10.1007/s002160051443

    Article  CAS  Google Scholar 

  141. Croce AC, Ferrigno A, Santin G et al (2014) Bilirubin: an autofluorescence bile biomarker of liver functionality monitoring. J Biophotonics 7:810-817. doi: 10.1002/jbio.201300039

  142. Croce AC, Ferrigno A, Santin G et al (2014) Autofluorescence of liver tissue and bile: organ functionality monitoring during ischemia and reoxygenation. Lasers Surg Med 46:412–421. doi:10.1002/lsm.22241

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank all the the colleagues contributing to our autofluorescence studies, as referred to in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna C. Croce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Croce, A.C., Bottiroli, G. (2017). Autofluorescence Spectroscopy for Monitoring Metabolism in Animal Cells and Tissues. In: Pellicciari, C., Biggiogera, M. (eds) Histochemistry of Single Molecules. Methods in Molecular Biology, vol 1560. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6788-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6788-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6787-2

  • Online ISBN: 978-1-4939-6788-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics