Skip to main content

Expression and Purification of a Matrix Metalloprotease Transmembrane Domain in Escherichia coli

  • Protocol
  • First Online:
Matrix Metalloproteases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1579))

  • 1001 Accesses

Abstract

Membrane tethered matrix metalloproteases are bound to the plasma membrane by a glycosylphosphatidylinositol-anchor or a transmembrane domain. To date, most studies of membrane-bound matrix metalloprotease have focused on the globular catalytic and protein–protein interaction domains of these enzymes. However, the transmembrane domains have been poorly studied even though they are known to mediate intracellular signaling via interaction with various cellular proteins. The expression and purification of the transmembrane domain of these proteins can be challenging due to their hydrophobic nature. In this chapter we describe the purification of a transmembrane domain for a membrane-bound matrix metalloprotease expressed in E. coli and its initial characterization by NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butler GS, Overall CM (2009) Updated biological roles for matrix metalloproteinases and new "intracellular" substrates revealed by degradomics. Biochemistry 48(46):10830–10845

    Article  CAS  PubMed  Google Scholar 

  2. Morrison CJ, Butler GS, Rodríguez D, Overall CM (2009) Matrix metalloproteinase proteomics: substrates, targets, and therapy. Curr Opin Cell Biol 21(5):645–653

    Article  CAS  PubMed  Google Scholar 

  3. Rodríguez D, Morrison CJ, Overall CM (2010) Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta 1803(1):39–54

    Article  PubMed  Google Scholar 

  4. Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40(6–7):1334–1347

    Article  CAS  PubMed  Google Scholar 

  5. Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16(5):558–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69(3):562–573

    Article  CAS  PubMed  Google Scholar 

  7. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14(17):2123–2133

    Article  CAS  PubMed  Google Scholar 

  10. Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg J-O (2011) Regulation of matrix metalloproteinase activity in health and disease. FEBS J 278(1):28–45

    Article  CAS  PubMed  Google Scholar 

  11. Sbardella D, Fasciglione GF, Gioia M, Ciaccio C, Tundo GR, Marini S, Coletta M (2012) Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 33(2):119–208

    Article  CAS  PubMed  Google Scholar 

  12. Piperi C, Papavassiliou AG (2012) Molecular mechanisms regulating matrix metalloproteinases. Curr Top Med Chem 12(10):1095–1112

    Article  CAS  PubMed  Google Scholar 

  13. Mannello F, Medda V (2012) Nuclear localization of matrix metalloproteinases. Prog Histochem Cytochem 47(1):27–58

    Article  PubMed  Google Scholar 

  14. Murphy G, Nagase H (2011) Localizing matrix metalloproteinase activities in the pericellular environment. FEBS J 278(1):2–15

    Article  CAS  PubMed  Google Scholar 

  15. Bourboulia D, Stetler-Stevenson WG (2010) Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin Cancer Biol 20(3):161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803(1):55–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gustafsson T (2011) Vascular remodelling in human skeletal muscle. Biochem Soc Trans 39(6):1628–1632

    Article  CAS  PubMed  Google Scholar 

  18. Kraiem Z, Korem S (2000) Matrix metalloproteinases and the thyroid. Thyroid 10(12):1061–1069

    Article  CAS  PubMed  Google Scholar 

  19. Ortega N, Behonick D, Stickens D, Werb Z (2003) How proteases regulate bone morphogenesis. Ann N Y Acad Sci 995:109–116

    Article  CAS  PubMed  Google Scholar 

  20. Parks WC, Shapiro SD (2001) Matrix metalloproteinases in lung biology. Respir Res 2(1):10–19

    CAS  PubMed  Google Scholar 

  21. Apte SS, Parks WC (2015) Metalloproteinases: a parade of functions in matrix biology and an outlook for the future. Matrix Biol 44-46:1–6

    Article  CAS  PubMed  Google Scholar 

  22. Rohani MG, Parks WC (2015) Matrix remodeling by MMPs during wound repair. Matrix Biol 44-46:113–121

    Article  CAS  PubMed  Google Scholar 

  23. Hu Y-FF, Chen Y-JJ, Lin Y-JJ, Chen S-AA (2015) Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol 12(4):230–243

    Article  CAS  PubMed  Google Scholar 

  24. Nissinen L, Kähäri V-MM (2014) Matrix metalloproteinases in inflammation. Biochim Biophys Acta 1840(8):2571–2580

    Article  CAS  PubMed  Google Scholar 

  25. Houghton AM (2015) Matrix metalloproteinases in destructive lung disease. Matrix Biol 44-46:167–174

    Article  PubMed  Google Scholar 

  26. Duarte S, Baber J, Fujii T, Coito AJ (2015) Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol 44-46:147–156

    Article  CAS  PubMed  Google Scholar 

  27. Mukherjee A, Swarnakar S (2015) Implication of matrix metalloproteinases in regulating neuronal disorder. Mol Biol Rep 42(1):1–11

    Article  CAS  PubMed  Google Scholar 

  28. Ip YC, Cheung ST, Fan ST (2007) Atypical localization of membrane type 1-matrix metalloproteinase in the nucleus is associated with aggressive features of hepatocellular carcinoma. Mol Carcinog 46(3):225–230

    Article  CAS  PubMed  Google Scholar 

  29. Kwan JA, Schulze CJ, Wang W, Leon H, Sariahmetoglu M, Sung M, Sawicka J, Sims DE, Sawicki G, Schulz R (2004) Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J 18(6):690–692

    CAS  PubMed  Google Scholar 

  30. Limb GA, Matter K, Murphy G, Cambrey AD, Bishop PN, Morris GE, Khaw PT (2005) Matrix metalloproteinase-1 associates with intracellular organelles and confers resistance to lamin A/C degradation during apoptosis. Am J Pathol 166(5):1555–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Si-Tayeb K, Monvoisin A, Mazzocco C, Lepreux S, Decossas M, Cubel G, Taras D, Blanc J-FF, Robinson DR, Rosenbaum J (2006) Matrix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis. Am J Pathol 169(4):1390–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Itoh Y (2015) Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol 44-46:207–223

    Article  CAS  PubMed  Google Scholar 

  33. Zucker S, Pei D, Cao J, Lopez-Otin C (2003) Membrane type-matrix metalloproteinases (MT-MMP). Curr Top Dev Biol 54:1–74

    Article  CAS  PubMed  Google Scholar 

  34. Hernandez-Barrantes S, Bernardo M, Toth M, Fridman R (2002) Regulation of membrane type-matrix metalloproteinases. Semin Cancer Biol 12(2):131–138

    Article  CAS  PubMed  Google Scholar 

  35. Galea C, Nguyen H, Chandy K, Smith B, Norton R (2014) Domain structure and function of matrix metalloprotease 23 (MMP23): role in potassium channel trafficking. Cell Mol Life Sci 71(7):1191–1210

    Article  CAS  PubMed  Google Scholar 

  36. Itoh Y, Takamura A, Ito N, Maru Y, Sato H (2001) Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO J 20(17):4782–4793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Itoh Y, Ito N, Nagase H, Seiki M (2008) The second dimer interface of MT1-MMP, the transmembrane domain, is essential for ProMMP-2 activation on the cell surface. J Biol Chem 283(19):13053–13062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Itoh Y, Ito N, Nagase H, Evans RD (2006) Cell surface collagenolysis requires homodimerization of the membrane-bound collagenase MT1-MMP. Mol Biol Cell 17(12):5390–5399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sakamoto T, Seiki M (2010) A membrane protease regulates energy production in macrophages by activating hypoxia-inducible factor-1 via a non-proteolytic mechanism. J Biol Chem 285(39):29951–29964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gonzalo P, Guadamillas MC, Hernández-Riquer MV (2010) MT1-MMP is required for myeloid cell fusion via regulation of Rac1 signaling. Dev Cell 18(1):77–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gingras D, Michaud M, Tomasso DG, Béliveau E (2008) Sphingosine-1-phosphate induces the association of membrane-type 1 matrix metalloproteinase with p130Cas in endothelial cells. FEBS Lett 582(3):399–404

    Article  CAS  PubMed  Google Scholar 

  42. Hoshino D, Tomari T, Nagano M, Koshikawa N (2009) A novel protein associated with membrane-type 1 matrix metalloproteinase binds p27kip1 and regulates RhoA activation, actin remodeling, and matrigel invasion. J Biol Chem 284(40):27315–27326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, McNiven MA (2012) Invasive matrix degradation at focal adhesions occurs via protease recruitment by a FAK-p130Cas complex. J Cell Biol 196(3):375–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Woskowicz AM, Weaver SA, Shitomi Y, Ito N (2013) MT-LOOP-dependent localization of membrane type I matrix metalloproteinase (MT1-MMP) to the cell adhesion complexes promotes cancer cell invasion. J Biol Chem 288(49):35126–35137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Uekita T, Itoh Y, Yana I, Ohno H, Seiki M (2002) Cytoplasmic tail-dependent internalization of membrane-type 1 matrix metalloproteinase is important for its invasion-promoting activity. J Cell Biol 155(7):1345–1356

    Google Scholar 

  46. Wang X, Ma D, Keski-Oja J, Pei D (2004) Co-recycling of MT1-MMP and MT3-MMP through the trans-Golgi network identification of DKV582 as a recycling signal. J Biol Chem 279(10):9331–9336

    Article  CAS  PubMed  Google Scholar 

  47. Wang P, Wang X, Pei D (2004) Mint-3 regulates the retrieval of the internalized membrane-type matrix metalloproteinase, MT5-MMP, to the plasma membrane by binding to its carboxyl end motif EWV. J Biol Chem 279(19):20461–20470

    Article  CAS  PubMed  Google Scholar 

  48. Nguyen H, Galea C, Schmunk G, Smith B, Edwards R, Norton R, Chandy K (2013) Intracellular trafficking of the K(V)1.3 potassium channel is regulated by the prodomain of a matrix metalloprotease. J Biol Chem 288(9):6451–6464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cai M, Huang Y, Sakaguchi K, Clore MG, Gronenborn AM, Craigie R (1998) An efficient and cost-effective isotope labeling protocol for proteins expressed in shape Escherichia coli. J Biomol NMR 11(1):97–102

    Article  CAS  PubMed  Google Scholar 

  50. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41(1):207–234

    Article  CAS  PubMed  Google Scholar 

  51. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352

    CAS  PubMed  Google Scholar 

  52. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Galea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Galea, C.A. (2017). Expression and Purification of a Matrix Metalloprotease Transmembrane Domain in Escherichia coli . In: Galea, C. (eds) Matrix Metalloproteases. Methods in Molecular Biology, vol 1579. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6863-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6863-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6861-9

  • Online ISBN: 978-1-4939-6863-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics