Skip to main content

Incorporation of Artificial Lipid-Anchored Proteins into Cultured Mammalian Cells

  • Protocol
  • First Online:
Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1609))

  • 2289 Accesses

Abstract

Exogenous lipid-anchored proteins can be incorporated into the plasma membranes of living mammalian cells, allowing the chemical structure of the incorporated protein and its lipid anchor to be controlled (and varied) to a much greater degree than is possible for proteins expressed by the cells themselves. This technology offers a variety of potential applications, including incorporating novel and complex protein constructs into cell surfaces and exploring structure-function relationships for biologically important lipid-anchored proteins such as glycosylphosphatidylinositol-anchored proteins. Here we describe detailed methods for stable incorporation of artificial lipid-anchored proteins into cultured mammalian cells under mild, nonperturbing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhagatji P, Leventis R, Comeau J, Refaei M, Silvius JR (2009) Steric and not structure-specific factors dictate the endocytic mechanism of glycosylphosphatidylinositol-anchored proteins. J Cell Biol 186(4):615–628. doi:10.1083/jcb.200903102. jcb.200903102 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Refaei M, Leventis R, Silvius JR (2011) Assessment of the roles of ordered lipid microdomains in post-endocytic trafficking of glycosyl-phosphatidylinositol-anchored proteins in mammalian fibroblasts. Traffic 12(8):1012–1024. doi:10.1111/j.1600-0854.2011.01206.x

    Article  CAS  PubMed  Google Scholar 

  3. Johannes L, Popoff V (2008) Tracing the retrograde route in protein trafficking. Cell 135(7):1175–1187. doi:10.1016/j.cell.2008.12.009. S0092-8674(08)01570-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Johannes L, Wunder C (2011) Retrograde transport: two (or more) roads diverged in an endosomal tree? Traffic 12(8):956–962. doi:10.1111/j.1600-0854.2011.01200.x

    Article  CAS  PubMed  Google Scholar 

  5. Geiger R, Luisoni S, Johnsson K, Greber UF, Helenius A (2013) Investigating endocytic pathways to the endoplasmic reticulum and to the cytosol using SNAP-trap. Traffic 14(1):36–46. doi:10.1111/tra.12018

    Article  CAS  PubMed  Google Scholar 

  6. Chung HA, Tajima K, Kato K, Matsumoto N, Yamamoto K, Nagamune T (2005) Modulating the actions of NK cell-mediated cytotoxicity using lipid-PEG (n) and inhibitory receptor-specific antagonistic peptide conjugates. Biotechnol Prog 21(4):1226–1230. doi:10.1021/bp049646b

    Article  CAS  PubMed  Google Scholar 

  7. Tomita U, Yamaguchi S, Sugimoto Y, Takamori S, Nagamune T (2012) Poly(ethylene glycol)-lipid-conjugated antibodies enhance dendritic cell phagocytosis of apoptotic cancer cells. Pharmaceuticals (Basel) 5(5):405–416. doi:10.3390/ph5050405

    Article  CAS  Google Scholar 

  8. Wang TY, Leventis R, Silvius JR (2005) Artificially lipid-anchored proteins can elicit clustering-induced intracellular signaling events in Jurkat T-lymphocytes independent of lipid raft association. J Biol Chem 280(24):22839–22846. doi:10.1074/jbc.M502920200

    Article  CAS  PubMed  Google Scholar 

  9. Silvius JR, l'Heureux F (1994) Fluorimetric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry 33(10):3014–3022

    Article  CAS  PubMed  Google Scholar 

  10. Shahinian S, Silvius JR (1995) Doubly-lipid-modified protein sequence motifs exhibit long-lived anchorage to lipid bilayer membranes. Biochemistry 34(11):3813–3822

    Article  CAS  PubMed  Google Scholar 

  11. Peters C, Wolf A, Wagner M, Kuhlmann J, Waldmann H (2004) The cholesterol membrane anchor of the hedgehog protein confers stable membrane association to lipid-modified proteins. Proc Natl Acad Sci U S A 101(23):8531–8536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van den Berg CW, Cinek T, Hallett MB, Horejsi V, Morgan BP (1995) Exogenous glycosyl phosphatidylinositol-anchored CD59 associates with kinases in membrane clusters on U937 cells and becomes Ca(2+)-signaling competent. J Cell Biol 131(3):669–677

    Article  PubMed  Google Scholar 

  13. Premkumar DR, Fukuoka Y, Sevlever D, Brunschwig E, Rosenberry TL, Tykocinski ML, Medof ME (2001) Properties of exogenously added GPI-anchored proteins following their incorporation into cells. J Cell Biochem 82(2):234–245

    Article  CAS  PubMed  Google Scholar 

  14. Baba T, Rauch C, Xue M, Terada N, Fujii Y, Ueda H, Takayama I, Ohno S, Farge E, Sato SB (2001) Clathrin-dependent and clathrin-independent endocytosis are differentially sensitive to insertion of poly (ethylene glycol)-derivatized cholesterol in the plasma membrane. Traffic 2(7):501–512

    Article  CAS  PubMed  Google Scholar 

  15. Ishiwata H, Sato SB, Vertut-Doi A, Hamashima Y, Miyajima K (1997) Cholesterol derivative of poly(ethylene glycol) inhibits clathrin-independent, but not clathrin-dependent endocytosis. Biochim Biophys Acta 1359(2):123–135

    Article  CAS  PubMed  Google Scholar 

  16. Sato SB, Ishii K, Makino A, Iwabuchi K, Yamaji-Hasegawa A, Senoh Y, Nagaoka I, Sakuraba H, Kobayashi T (2004) Distribution and transport of cholesterol-rich membrane domains monitored by a membrane-impermeant fluorescent polyethylene glycol-derivatized cholesterol. J Biol Chem 279(22):23790–23796

    Article  CAS  PubMed  Google Scholar 

  17. Chung HA, Kato K, Itoh C, Ohhashi S, Nagamune T (2004) Casual cell surface remodeling using biocompatible lipid-poly(ethylene glycol)(n): development of stealth cells and monitoring of cell membrane behavior in serum-supplemented conditions. J Biomed Mater Res A 70(2):179–185. doi:10.1002/jbm.a.20117

    Article  PubMed  Google Scholar 

  18. Kato K, Itoh C, Yasukouchi T, Nagamune T (2004) Rapid protein anchoring into the membranes of mammalian cells using oleyl chain and poly(ethylene glycol) derivatives. Biotechnol Prog 20(3):897–904. doi:10.1021/bp0342093

    Article  CAS  PubMed  Google Scholar 

  19. Totani T, Teramura Y, Iwata H (2008) Immobilization of urokinase on the islet surface by amphiphilic poly(vinyl alcohol) that carries alkyl side chains. Biomaterials 29(19):2878–2883. doi:10.1016/j.biomaterials.2008.03.024

    Article  CAS  PubMed  Google Scholar 

  20. Tomita U, Yamaguchi S, Maeda Y, Chujo K, Minamihata K, Nagamune T (2013) Protein cell-surface display through in situ enzymatic modification of proteins with a poly(ethylene glycol)-lipid. Biotechnol Bioeng 110(10):2785–2789. doi:10.1002/bit.24933

    Article  CAS  PubMed  Google Scholar 

  21. England CG, Luo H, Cai W (2015) HaloTag technology: a versatile platform for biomedical applications. Bioconjug Chem 26(6):975–986. doi:10.1021/acs.bioconjchem.5b00191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zalipsky S (1995) Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconjug Chem 6(2):150–165

    Article  CAS  PubMed  Google Scholar 

  23. Zalipsky S, Brandeis E, Newman MS, Woodle MC (1994) Long circulating, cationic liposomes containing amino-PEG-phosphatidylethanolamine. FEBS Lett 353(1):71–74

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Silvius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Leventis, R., Silvius, J.R. (2017). Incorporation of Artificial Lipid-Anchored Proteins into Cultured Mammalian Cells. In: Bhattacharya, S. (eds) Lipidomics. Methods in Molecular Biology, vol 1609. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6996-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6996-8_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6995-1

  • Online ISBN: 978-1-4939-6996-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics