Skip to main content

Defining Assembly Pathways by Fluorescence Microscopy

  • Protocol
  • First Online:
Bacterial Protein Secretion Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1615))

Abstract

Bacterial secretion systems are among the largest protein complexes in prokaryotes and display remarkably complex architectures. Their assembly often follows clearly defined pathways. Deciphering these pathways not only reveals how bacteria accomplish building these large functional complexes but can provide crucial information on the interactions and subcomplexes within secretion systems, their distribution within bacteria, and even functional insights. The emergence of fluorescent proteins has provided a new powerful tool for biological imaging, and the use of fluorescently labeled components presents an interesting method to accurately define the biogenesis of macromolecular complexes. Here we describe the use of this method to decipher the assembly pathway of bacterial secretion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tseng T-T, Tyler B, Setubal J (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 9:S2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13:343–359

    Article  CAS  PubMed  Google Scholar 

  3. Kimbrough TG, Miller SI (2000) Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc Natl Acad Sci U S A 97:11008–11013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sukhan A, Kubori T, Wilson J, Galán JE (2001) Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex. J Bacteriol 183:1159–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kimbrough TG, Miller SI (2002) Assembly of the type III secretion needle complex of Salmonella typhimurium. Microbes Infect 4:75–82

    Article  CAS  PubMed  Google Scholar 

  6. Ogino T, Ohno R, Sekiya K, Kuwae A, Matsuzawa T, Nonaka T, Fukuda H, Imajoh-Ohmi S, Abe A (2006) Assembly of the type III secretion apparatus of enteropathogenic Escherichia coli. J Bacteriol 188:2801–2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fronzes R, Schäfer E, Wang L, Saibil H, Orlova E, Waksman G (2009) Structure of a type IV secretion system core complex. Science 323:266–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schraidt O, Lefebre MD, Brunner MJ, Schmied WH, Schmidt A, Radics J, Mechtler K, Galán JE, Marlovits TC (2010) Topology and organization of the Salmonella typhimurium type III secretion needle complex components. PLoS Pathog 6:e1000824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reichow SL, Korotkov KV, Hol WGJ, Gonen T (2010) Structure of the cholera toxin secretion channel in its closed state. Nat Struct Mol Biol 17:1226–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chandran Darbari V, Waksman G (2015) Structural biology of bacterial type IV secretion systems. Annu Rev Biochem 84:603–629

    Article  CAS  PubMed  Google Scholar 

  11. Rose P, Fröbel J, Graumann PL, Müller M (2013) Substrate-dependent assembly of the Tat translocase as observed in live Escherichia coli cells. PLoS One 8:e69488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alcock F, Baker MAB, Greene NP, Palmer T, Wallace MI, Berks BC (2013) Live cell imaging shows reversible assembly of the TatA component of the twin-arginine protein transport system. Proc Natl Acad Sci U S A 110:3650–3659

    Article  Google Scholar 

  13. Lybarger S, Johnson TL, Gray M, Sikora A, Sandkvist M (2009) Docking and assembly of the type II secretion complex of Vibrio cholerae. J Bacteriol 191:3149–3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Johnson TL, Sikora AE, Zielke RA, Sandkvist M (2013) Fluorescence microscopy and proteomics to investigate subcellular localization, assembly, and function of the type II secretion system. Methods Mol Biol 966:157–172

    Article  CAS  PubMed  Google Scholar 

  15. Diepold A, Amstutz M, Abel S, Sorg I, Jenal U, Cornelis GR (2010) Deciphering the assembly of the Yersinia type III secretion injectisome. EMBO J 29:1928–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Diepold A, Wiesand U, Cornelis GR (2011) The assembly of the export apparatus (YscR,S,T,U,V) of the Yersinia type III secretion apparatus occurs independently of other structural components and involves the formation of an YscV oligomer. Mol Microbiol 82:502–514

    Article  CAS  PubMed  Google Scholar 

  17. Aguilar J, Zupan J, Cameron TA, Zambryski PC (2010) Agrobacterium type IV secretion system and its substrates form helical arrays around the circumference of virulence-induced cells. Proc Natl Acad Sci U S A 107:3758–3763

    Article  PubMed  PubMed Central  Google Scholar 

  18. Durand E, Nguyen VS, Zoued A, Logger L, Péhau-Arnaudet G, Aschtgen M-S, Spinelli S, Desmyter A, Bardiaux B, Dujeancourt A, Roussel A, Cambillau C, Cascales E, Fronzes R (2015) Biogenesis and structure of a type VI secretion membrane core complex. Nature 523:555–560

    Article  CAS  PubMed  Google Scholar 

  19. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Köhler A (1893) Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke. Z Wiss Mikrosk 10:433–440

    Google Scholar 

  21. Paintdakhi A, Parry B, Campos M, Irnov I, Elf J, Surovtsev I, Jacobs-Wagner C (2015) Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. Mol Microbiol 99:767–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  PubMed  Google Scholar 

  23. Adams S, Campbell R, Gross L, Martin B, Walkup G, Yao Y, Llopis J, Tsien RY (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124:6063–6076

    Article  CAS  PubMed  Google Scholar 

  24. Andresen M, Schmitz-Salue R, Jakobs S (2004) Short tetracysteine tags to beta-tubulin demonstrate the significance of small labels for live cell imaging. Mol Biol Cell 15:5616–5622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Enninga J, Mounier J, Sansonetti P, Tran Van Nhieu G, Van Nhieu GT (2005) Secretion of type III effectors into host cells in real time. Nat Methods 2:959–965

    Article  CAS  PubMed  Google Scholar 

  26. Diepold A, Kudryashev M, Delalez NJ, Berry RM, Armitage JP (2015) Composition, formation, and regulation of the cytosolic C-ring, a dynamic component of the type III secretion injectisome. PLoS Biol 13:e1002039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poulter NS, Pitkeathly WTE, Smith PJ, Rappoport JZ (2015) In: Verveer PJ (ed) Advanced fluorescence microscopy. Springer, New York

    Google Scholar 

  28. MacDonald L, Baldini G, Storrie B (2015) Does super-resolution fluorescence microscopy obsolete previous microscopic approaches to protein co-localization? Methods Mol Biol 1270:255–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Diepold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zoued, A., Diepold, A. (2017). Defining Assembly Pathways by Fluorescence Microscopy. In: Journet, L., Cascales, E. (eds) Bacterial Protein Secretion Systems. Methods in Molecular Biology, vol 1615. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7033-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7033-9_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7031-5

  • Online ISBN: 978-1-4939-7033-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics