Skip to main content

Expression, Biochemistry, and Stabilization with Camel Antibodies of Membrane Proteins: Case Study of the Mouse 5-HT3 Receptor

  • Protocol
  • First Online:
Membrane Protein Structure and Function Characterization

Abstract

There is growing interest in the use of mammalian protein expression systems, and in the use of antibody-derived chaperones, for structural studies. Here, we describe protocols ranging from the production of recombinant membrane proteins in stable inducible cell lines to biophysical characterization of purified membrane proteins in complex with llama antibody domains. These protocols were used to solve the structure of the mouse 5-HT3 serotonin receptor but are of broad applicability for crystallization or cryo-electron microscopy projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hassaïne G, Deluz C, Li X-D, Graff A, Vogel H, Nury H (2013) Large scale expression and purification of the mouse 5-HT3 receptor. Biochim Biophys Acta Biomembr 1828(11):2544–2552

    Article  Google Scholar 

  2. Hassaïne G, Deluz C, Grasso L, Wyss R, Tol MB et al (2014) X-ray structure of the mouse serotonin 5-HT3 receptor. Nature 512(7514):276–281

    Article  PubMed  Google Scholar 

  3. Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J et al (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411(6835):269–276

    Article  CAS  PubMed  Google Scholar 

  4. Nys M, Kesters D, Ulens C (2013) Structural insights into Cys-loop receptor function and ligand recognition. Biochem Pharmacol 86(8):1042–1053

    Article  CAS  PubMed  Google Scholar 

  5. Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346(4):967–989

    Article  CAS  PubMed  Google Scholar 

  6. Hilf RJC, Dutzler R (2008) X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452(7185):375–379

    Article  CAS  PubMed  Google Scholar 

  7. Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux J-P et al (2009) X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457(7225):111–114

    Article  CAS  PubMed  Google Scholar 

  8. Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474(7349):54–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller PS, Aricescu AR (2014) Crystal structure of a human GABAA receptor. Nature 512(7514):270–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang X, Chen H, Michelsen K, Schneider S, Shaffer PL (2015) Crystal structure of human glycine receptor-α3 bound to antagonist strychnine. Nature 526:277–280

    Article  CAS  PubMed  Google Scholar 

  11. Du J, Lü W, Wu S, Cheng Y, Gouaux E (2015) Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature 526:224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lochner M, Thompson AJ (2015) A review of fluorescent ligands for studying 5-HT3 receptors. Neuropharmacology 98:31–40

    Article  CAS  PubMed  Google Scholar 

  13. Seiradake E, Zhao Y, Lu W, Aricescu AR, Jones EY (2015) Production of cell surface and secreted glycoproteins in mammalian cells. Methods Mol Biol 1261:115–127

    Article  CAS  PubMed  Google Scholar 

  14. Goehring A, Lee C-H, Wang KH, Michel JC, Claxton DP et al (2014) Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat Protoc 9(11):2574–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yao F, Svensjö T, Winkler T, Lu M, Eriksson C, Eriksson E (1998) Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells. Hum Gene Ther 9(13):1939–1950

    Article  CAS  PubMed  Google Scholar 

  16. Loo T, Patchett ML, Norris GE, Lott JS (2002) Using secretion to solve a solubility problem: high-yield expression in Escherichia coli and purification of the bacterial Glycoamidase PNGase F. Protein Expr Purif 24(1):90–98

    Article  CAS  PubMed  Google Scholar 

  17. Pardon E, Laeremans T, Triest S, Rasmussen SGF, Wohlkönig A et al (2014) A general protocol for the generation of Nanobodies for structural biology. Nat Protoc 9(3):674–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dostalova Z, Liu A, Zhou X, Farmer SL, Krenzel ES et al (2010) High-level expression and purification of Cys-loop ligand-gated ion channels in a tetracycline-inducible stable mammalian cell line: GABAA and serotonin receptors. Protein Sci 19(9):1728–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu Z-S, Cui Z-C, Cheng H, Fan C, Melcher K et al (2015) High yield and efficient expression and purification of the human 5-HT3A receptor. Acta Pharmacol Sin 36:1024–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Green T, Stauffer KA, Lummis SCR (1995) Expression of recombinant homo-oligomeric 5-Hydroxytryptamine(3) receptors provides new insights into their maturation and structure. J Biol Chem 270(11):6056–6061

    Article  CAS  PubMed  Google Scholar 

  21. Na J-H, Shin J, Jung Y, Lim D, Shin Y-K, Yu YG (2013) Bacterially expressed human serotonin receptor 3A is functionally reconstituted in proteoliposomes. Protein Expr Purif 88(2):190–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hattori M, Hibbs RE, Gouaux E (2012) A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20(8):1293–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muller N, Girard P, Hacker DL, Jordan M, Wurm FM (2005) Orbital shaker technology for the cultivation of mammalian cells in suspension. Biotechnol Bioeng 89(4):400–406

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant from the European Research Council (ERC-2014-StG PentaBrain), by the Swiss National Science Foundation, by the Ecole Polytechnique Fédérale de Lausanne, and by the CEA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues Nury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hassaïne, G. et al. (2017). Expression, Biochemistry, and Stabilization with Camel Antibodies of Membrane Proteins: Case Study of the Mouse 5-HT3 Receptor. In: Lacapere, JJ. (eds) Membrane Protein Structure and Function Characterization. Methods in Molecular Biology, vol 1635. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7151-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7151-0_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7149-7

  • Online ISBN: 978-1-4939-7151-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics