Skip to main content

Expression of Recombinant Phosphoproteins for Signal Transduction Studies

  • Protocol
  • First Online:
Kinase Signaling Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1636))

Abstract

Complex signaling cascades are difficult to study in vitro without phosphorylated proteins. Here, we describe a technique for the routine production of recombinant phosphoproteins by directly incorporating phosphoserine as a nonstandard amino acid. This protocol utilizes an optimized phosphoserine orthogonal translation system and an engineered strain of E. coli containing no genomic amber codons. This approach has been used to generate a variety of phosphorylated proteins to understand the role of protein phosphorylation in cell signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8(7):530–541. doi:10.1038/nrm2203

    Article  CAS  PubMed  Google Scholar 

  2. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science (New York, NY) 298(5600):1912–1934. doi:10.1126/science.1075762

    Article  CAS  Google Scholar 

  3. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40(Database issue):D261–D270. doi:10.1093/nar/gkr1122

    Article  CAS  PubMed  Google Scholar 

  4. Park HS, Hohn MJ, Umehara T, Guo LT, Osborne EM, Benner J, Noren CJ, Rinehart J, Soll D (2011) Expanding the genetic code of Escherichia coli with phosphoserine. Science (New York, NY) 333(6046):1151–1154. doi:10.1126/science.1207203

    Article  CAS  Google Scholar 

  5. Sauerwald A, Zhu W, Major TA, Roy H, Palioura S, Jahn D, Whitman WB, Yates JR 3rd, Ibba M, Soll D (2005) RNA-dependent cysteine biosynthesis in archaea. Science (New York, NY) 307(5717):1969–1972. doi:10.1126/science.1108329

    Article  CAS  Google Scholar 

  6. Lee S, Oh S, Yang A, Kim J, Soll D, Lee D, Park HS (2013) A facile strategy for selective incorporation of phosphoserine into histones. Angew Chem Int Ed Engl 52(22):5771–5775. doi:10.1002/anie.201300531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Aerni HR, Shifman MA, Rogulina S, O'Donoghue P, Rinehart J (2014) Revealing the amino acid composition of proteins within an expanded genetic code. Nucleic Acids Res 43(2):e8

    Article  PubMed Central  PubMed  Google Scholar 

  8. Rogerson DT, Sachdeva A, Wang K, Haq T, Kazlauskaite A, Hancock SM, Huguenin-Dezot N, Muqit MM, Fry AM, Bayliss R, Chin JW (2015) Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. Nat Chem Biol 11(7):496–503. doi:10.1038/nchembio.1823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Pirman NL, Barber KW, Aerni HR, Ma NJ, Haimovich AD, Rogulina S, Isaacs FJ, Rinehart J (2015) A flexible codon in genomically recoded Escherichia coli permits programmable protein phosphorylation. Nat Commun 6:8130

    Article  PubMed Central  PubMed  Google Scholar 

  10. Oza JP, Aerni HR, Pirman NL, Barber KW, ter Haar CM, Rogulina S, Amrofell MB, Isaacs FJ, Rinehart J, Jewett MC (2015) Robust production of recombinant phosphoproteins using cell-free protein synthesis. Nat Commun 6:8168

    Article  PubMed Central  PubMed  Google Scholar 

  11. Heinemann IU, Rovner AJ, Aerni HR, Rogulina S, Cheng L, Olds W, Fischer JT, Soll D, Isaacs FJ, Rinehart J (2012) Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion. FEBS Lett 586(20):3716–3722. doi:10.1016/j.febslet.2012.08.031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ (2013) Genomically recoded organisms expand biological functions. Science (New York, NY) 342(6156):357–360. doi:10.1126/science.1241459

    Article  CAS  Google Scholar 

  13. Steinfeld JB, Aerni HR, Rogulina S, Liu Y, Rinehart J (2014) Expanded cellular amino acid pools containing phosphoserine, phosphothreonine, and phosphotyrosine. ACS Chem Biol 9(5):1104–1112. doi:10.1021/cb5000532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ordureau A, Heo JM, Duda DM, Paulo JA, Olszewski JL, Yanishevski D, Rinehart J, Schulman BA, Harper JW (2015) Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc Natl Acad Sci U S A 112(21):6637–6642. doi:10.1073/pnas.1506593112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW (2015) The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 60(1):7–20. doi:10.1016/j.molcel.2015.08.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5(4):749–757. doi:10.1074/mcp.T500024-MCP200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Natasha L. Pirman and Svetlana Rogulina for their efforts to establish this protocol. K.W.B. is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1122492. J.R. is supported by NIH R01 GM117230 and NIDDK grant P01DK01743341.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Rinehart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Barber, K.W., Rinehart, J. (2017). Expression of Recombinant Phosphoproteins for Signal Transduction Studies. In: Tan, AC., Huang, P. (eds) Kinase Signaling Networks. Methods in Molecular Biology, vol 1636. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7154-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7154-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7152-7

  • Online ISBN: 978-1-4939-7154-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics