Skip to main content

Cellular Analysis of Adult Neural Stem Cells for Investigating Prion Biology

  • Protocol
  • First Online:
Prions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1658))

Abstract

Traditional primary and secondary cell cultures have been used for the investigation of prion biology and disease for many years. While both types of cultures produce highly valid and immensely valuable results, they also have their limitations; traditional cell lines are often derived from cancers, therefore subject to numerous DNA changes, and primary cultures are labor-intensive and expensive to produce requiring sacrifice of many animals. Neural stem cell (NSC) cultures are a relatively new technology to be used for the study of prion biology and disease. While NSCs are subject to their own limitations—they are generally cultured ex vivo in environments that artificially force their growth—they also have their own unique advantages. NSCs retain the ability for self-renewal and can therefore be propagated in culture similarly to secondary cultures without genetic manipulation. In addition, NSCs are multipotent; they can be induced to differentiate into mature cells of central nervous system (CNS) linage. The combination of self-renewal and multipotency allows NSCs to be used as a primary cell line over multiple generations saving time, costs, and animal harvests, thus providing a valuable addition to the existing cell culture repertoire used for investigation of prion biology and disease. Furthermore, NSC cultures can be generated from mice of any genotype, either by embryonic harvest or harvest from adult brain, allowing gene expression to be studied without further genetic manipulation. This chapter describes a standard method of culturing adult NSCs and assays for monitoring NSC growth, migration, and differentiation and revisits basic reactive oxygen species detection in the context of NSC cultures.

#Present address: Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steele AD, Emsley JG, Ozdinler PH et al (2006) Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci U S A 103:3416–3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miranda A, Pericuesta E, Ramirez MA, Gutierrez-Adan A (2011) Prion protein expression regulates embryonic stem cell pluripotency and differentiation. PLoS One 6:e18422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martin-Lanneree S, Halliez S, Hirsch TZ et al (2016) The cellular prion protein controls notch signaling in neural stem/progenitor cells. Stem Cells 35(3):754–765. doi:10.1002/stem.2501

    Article  PubMed  Google Scholar 

  4. Lee YJ, Baskakov IV (2013) The cellular form of the prion protein is involved in controlling cell cycle dynamics, self-renewal, and the fate of human embryonic stem cell differentiation. J Neurochem 124:310–322

    Article  CAS  PubMed  Google Scholar 

  5. Lee YJ, Baskakov IV (2010) Treatment with normal prion protein delays differentiation and helps to maintain high proliferation activity in human embryonic stem cells. J Neurochem 114:362–373

    Article  CAS  PubMed  Google Scholar 

  6. Peralta OA, Huckle WR, Eyestone WH (2011) Expression and knockdown of cellular prion protein (PrPC) in differentiating mouse embryonic stem cells. Differentiation 81:68–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hartmann CA, Martins VR, Lima FR (2013) High levels of cellular prion protein improve astrocyte development. FEBS Lett 587:238–244

    Article  CAS  PubMed  Google Scholar 

  8. Doeppner TR, Kaltwasser B, Schlechter J et al (2015) Cellular prion protein promotes post-ischemic neuronal survival, angioneurogenesis and enhances neural progenitor cell homing via proteasome inhibition. Cell Death Dis 6:e2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herva ME, Relano-Gines A, Villa A, Torres JM (2010) Prion infection of differentiated neurospheres. J Neurosci Methods 188:270–275

    Article  CAS  PubMed  Google Scholar 

  10. Giri RK, Young R, Pitstick R et al (2006) Prion infection of mouse neurospheres. Proc Natl Acad Sci U S A 103:3875–3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Milhavet O, Casanova D, Chevallier N et al (2006) Neural stem cell model for prion propagation. Stem Cells 24:2284–2291

    Article  CAS  PubMed  Google Scholar 

  12. Relano-Gines A, Gabelle A, Hamela C et al (2013) Prion replication occurs in endogenous adult neural stem cells and alters their neuronal fate: involvement of endogenous neural stem cells in prion diseases. PLoS Pathog 9:e1003485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haigh CL, McGlade AR, Lewis V et al (2011) Acute exposure to prion infection induces transient oxidative stress progressing to be cumulatively deleterious with chronic propagation in vitro. Free Radic Biol Med 51:594–608

    Article  CAS  PubMed  Google Scholar 

  14. Sinclair L, Lewis V, Collins SJ, Haigh CL (2013) Cytosolic caspases mediate mislocalised SOD2 depletion in an in vitro model of chronic prion infection. Dis Model Mech 6:952–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iwamaru Y, Takenouchi T, Imamura M et al (2013) Prion replication elicits cytopathic changes in differentiated neurosphere cultures. J Virol 87:8745–8755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Biasini E, Turnbaugh JA, Massignan T et al (2012) The toxicity of a mutant prion protein is cell-autonomous, and can be suppressed by wild-type prion protein on adjacent cells. PLoS One 7:e33472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Collins SJ, Haigh CL (2016) Simplified murine 3D neuronal cultures for investigating neuronal activity and neurodegeneration. Cell Biochem Biophys 75(1):3–13. doi:10.1007/s12013-016-0768-z

    Article  PubMed  Google Scholar 

  18. Relano-Gines A, Lehmann S, Bencsik A et al (2011) Stem cell therapy extends incubation and survival time in prion-infected mice in a time window-dependant manner. J Infect Dis 204:1038–1045

    Article  PubMed  Google Scholar 

  19. Chojnacki A, Weiss S (2008) Production of neurons, astrocytes and oligodendrocytes from mammalian CNS stem cells. Nat Protoc 3:935–940

    Article  CAS  PubMed  Google Scholar 

  20. Ahlenius H, Kokaia Z (2010) Isolation and generation of neurosphere cultures from embryonic and adult mouse brain. Methods Mol Biol 633:241–252

    Article  CAS  PubMed  Google Scholar 

  21. Santos TG, Silva IR, Costa-Silva B et al (2011) Enhanced neural progenitor/stem cells self-renewal via the interaction of stress-inducible protein 1 with the prion protein. Stem Cells 29:1126–1136

    Article  CAS  PubMed  Google Scholar 

  22. Collins SJ, Tumpach C, Li QX et al (2015) The prion protein regulates beta-amyloid mediated self-renewal of neural stem cells in vitro. Stem Cell Res Ther 6:60

    Article  PubMed  PubMed Central  Google Scholar 

  23. Haigh CL, Tumpach C, Collins SJ, Drew SC (2016) A 2-substituted 8-hydroxyquinoline stimulates neural stem cell proliferation by modulating ROS signalling. Cell Biochem Biophys 74:297–306

    Article  CAS  PubMed  Google Scholar 

  24. Haigh CL, Brown DR (2008) Investigation of PrPC metabolism and function in live cells: methods for studying individual cells and cell populations. Methods Mol Biol 459:21–34

    Article  CAS  PubMed  Google Scholar 

  25. García Gil-Perotin S, Alvarez A, Garcia-Verdugo JM (2009) Identification and characterization of neural progenitor cells in the adult mammalian brain. Adv Anat Embryol Cell Biol 203:1–101. Springer

    Article  PubMed  Google Scholar 

  26. Kearns SM, Laywell ED, Kukekov VK, Steindler DA (2003) Extracellular matrix effects on neurosphere cell motility. Exp Neurol 182:240–244

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathryn L. Haigh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Haigh, C.L. (2017). Cellular Analysis of Adult Neural Stem Cells for Investigating Prion Biology. In: Lawson, V. (eds) Prions. Methods in Molecular Biology, vol 1658. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7244-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7244-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7242-5

  • Online ISBN: 978-1-4939-7244-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics