Skip to main content

Development and Observation of Mature Megagametophyte Cell-Specific Fluorescent Markers

  • Protocol
  • First Online:
Plant Germline Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1669))

Abstract

Visualization of the intact embryo sac within the ovular/gynoecial tissues and clear identification of cell types can be logistically difficult and subject to interpretation. Cellular marker technologies have been available for the embryo sac, but have typically labeled only one cell type in a particular line. Here, we describe techniques for simultaneous labeling each cell type in the embryo sac and visualization methods for such in Arabidopsis, soybean, maize, and sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sprunck S, Gross-Hardt R (2011) Nuclear behavior, cell polarity, and cell specification in the female gametophyte. Sex Plant Reprod 24(2):123–136

    Article  PubMed  Google Scholar 

  2. Berger F, Twell D (2011) Germline specification and function in plants. Annu Rev Plant Biol 62(1):461–484

    Article  CAS  PubMed  Google Scholar 

  3. Sundaresan V, Alandete-Saez M (2010) Pattern formation in miniature: the female gametophyte of flowering plants. Development 137(2):179–189

    Article  CAS  PubMed  Google Scholar 

  4. Vielle-Calzada JP, Baskar R, Grossniklaus U (2000) Delayed activation of the paternal genome during seed development. Nature 404(6773):91–94

    Article  CAS  PubMed  Google Scholar 

  5. Yang W, Jefferson RA, Huttner E, Moore JM, Gagliano WB, Grossniklaus U (2005) An egg apparatus-specific enhancer of Arabidopsis, identified by enhancer detection. Plant Physiol 139(3):1421–1432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gross-Hardt R, Kagi C, Baumann N, Moore JM, Baskar R, Gagliano WB, Jurgens G, Grossniklaus U (2007) LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLoS Biol 5(3):e47

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sánchez-León N, Arteaga-Vázquez M, Alvarez-Mejía C, Mendiola-Soto J, Durán-Figueroa N, Rodríguez-Leal D, Rodríguez-Arévalo I, García-Campayo V, García-Aguilar M, Olmedo-Monfil V, Arteaga-Sánchez M, Martínez de la Vega O, Nobuta K, Vemaraju K, Meyers BC, Vielle-Calzada J-P (2012) Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing. J Exp Bot 63(10):3829–3842

    Article  PubMed Central  PubMed  Google Scholar 

  8. Johnston A, Meier P, Gheyselinck J, Wuest S, Federer M, Schlagenhauf E, Becker J, Grossniklaus U (2007) Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte. Genome Biol 8(10):R204

    Article  PubMed Central  PubMed  Google Scholar 

  9. Steffen JG, Kang IH, Macfarlane J, Drews GN (2007) Identification of genes expressed in the Arabidopsis female gametophyte. Plant J 51(2):281–292

    Article  CAS  PubMed  Google Scholar 

  10. Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F, Rahnenführer J, von Mering C, Grossniklaus U (2010) Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr Biol 20(6):506–512

    Article  CAS  PubMed  Google Scholar 

  11. Ohnishi T, Takanashi H, Mogi M, Takahashi H, Kikuchi S, Yano K, Okamoto T, Fujita M, Kurata N, Tsutsumi N (2011) Distinct gene expression profiles in egg and synergid cells of rice as revealed by cell type-specific microarrays. Plant Physiol 155(2):881–891

    Article  CAS  PubMed  Google Scholar 

  12. H-J Y, Hogan P, Sundaresan V (2005) Analysis of the female gametophyte transcriptome of arabidopsis by comparative expression profiling. Plant Physiol 139(4):1853–1869

    Article  Google Scholar 

  13. Lawit SJ, Chamberlin MA, Agee A, Caswell ES, Albertsen MC (2013) Transgenic manipulation of plant embryo sacs tracked through cell-type-specific fluorescent markers: cell labeling, cell ablation, and adventitious embryos. Plant Reprod 26(2):125–137

    Article  PubMed  Google Scholar 

  14. Green M, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  15. Chen W, Tulsieram L (2015) Microprojectile bombardment transformation of Brassica. US Patent No. 8,993,845

    Google Scholar 

  16. Li Z, Xing A, Moon BP, McCardell RP, Mills K, Falco SC (2009) Site-specific integration of transgenes in soybean via recombinase-mediated DNA cassette exchange. Plant Physiol 151(3):1087–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Cho M-J, Wu E, Kwan J, Yu M, Banh J, Linn W, Anand A, Li Z, TeRonde S, Register JC III (2014) Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Rep 33(10):1767–1777

    Article  CAS  PubMed  Google Scholar 

  18. Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, Asmus T, Zhen S, Chu U, Cho M-J, Zhao Z-Y (2014) Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell Dev Biol Plant 50(1):9–18

    Article  PubMed  Google Scholar 

  19. Staudt T, Lang MC, Medda R, Engelhardt J, Hell SW (2007) 2,2′-Thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc Res Tech 70(1):1–9

    Article  CAS  PubMed  Google Scholar 

  20. Carman JG, Jamison M, Elliott E, Dwivedi KK, Naumova TN (2011) Apospory appears to accelerate onset of meiosis and sexual embryo sac formation in sorghum ovules. BMC Plant Biol 11(1):1

    Article  Google Scholar 

Download references

Acknowledgment

This work was developed at and supported by DuPont Pioneer. Sorghum analysis was supported by a sub-award from the CSIRO under the Capturing Heterosis for Smallholder Farmers grant from the Bill and Melinda Gates Foundation. We thank Katherine Thilges, Tim Fox, Brian Loveland, Eric S. Caswell, April Agee, Ping Che, and others for technical support of this work. We thank Kristin Haug-Collet, Susan D. Johnson, and Anna M. Koltunow for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shai J. Lawit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Chamberlin, M.A., Lawit, S.J. (2017). Development and Observation of Mature Megagametophyte Cell-Specific Fluorescent Markers. In: Schmidt, A. (eds) Plant Germline Development. Methods in Molecular Biology, vol 1669. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7286-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7286-9_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7285-2

  • Online ISBN: 978-1-4939-7286-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics