Skip to main content

Measuring Spatial and Temporal Oxygen Flux Near Plant Tissues Using a Self-Referencing Optrode

  • Protocol
  • First Online:
Plant Respiration and Internal Oxygen

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1670))

Abstract

Self-referencing optrodic microsensing is a noninvasive method for measuring oxygen transport into/from tissues. The sensing mechanism is based on fluorescence quenching by molecular oxygen at the tip of a fiber-optic probe, and facilitates microscale spatial mapping and continuous monitoring at 100–350 mHz sampling frequency. Over the last decade, this technique has been applied for plant tissues, including roots, seeds, leaves, and flowers in both liquid and air. Here, we describe the operating principle of self-referencing optrodic microsensing for the study of plant tissues with a specific focus on juvenile roots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark L, Wolf R, Granger D, Taylor Z (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6(3):189–193

    CAS  PubMed  Google Scholar 

  2. Wang X, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43(10):3666–3761

    Article  CAS  PubMed  Google Scholar 

  3. Verslues PE, Ober ES, Sharp RE (1998) Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions 1. Plant Physiol 116(4):1403–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kautsky H, Hirsch A (1947) Energie-Umwandlungen an Grenzflächen, IV. Ber Dtsch Chem Ges B 64(10):2677–2683

    Article  Google Scholar 

  5. Bergman I (1968) Rapid-response atmospheric oxygen monitor based on fluorescence quenching. Nature 218:396

    Article  CAS  Google Scholar 

  6. HH Hesse (1974), “East Ger. Patent”

    Google Scholar 

  7. Papkovsky DB, Dmitriev RI (2013) Biological detection by optical oxygen sensing. Chem Soc Rev 42:8700–8732

    Article  CAS  PubMed  Google Scholar 

  8. Chaturvedi P et al (2013) Emerging technologies for non-invasive quantification of physiological oxygen transport in plants. Planta An Int J Plant Biol 238(3):599–614

    CAS  Google Scholar 

  9. Chatni MR, Porterfield DM (2009) Self-referencing optrode technology for non-invasive real-time measurement of biophysical flux and physiological sensing. Analyst 134(11):2224–2232

    Article  CAS  PubMed  Google Scholar 

  10. Chatni MR, Li G, Porterfield DM (2009) Frequency-domain fluorescence lifetime optrode system design and instrumentation without a concurrent reference light-emitting diode. Appl Opt 48(29):5528–5536

    Article  CAS  PubMed  Google Scholar 

  11. Jaffe LF, Nuccitelli R (1974) An ultrasensitive vibrating probe for measuring steady extracellular currents. J Cell Biol 63(2):614–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reid B, Nuccitelli R, Zhao M (2007) Non-invasive measurement of bioelectric currents with a vibrating probe. Nat Protoc 2(3):661–669

    Article  CAS  PubMed  Google Scholar 

  13. Nuccitelli R, Jaffe LF (1974) Spontaneous current pulses through developing fucoid eggs. Proc Natl Acad Sci U S A 71(12):4855–4859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Land SC, Porterfield DM, Sanger RH, Smith PJ (1999) The self-referencing oxygen-selective microelectrode: detection of transmembrane oxygen flux from single cells. J Exp Biol 202(Pt 2):211–218

    CAS  PubMed  Google Scholar 

  15. Zheng W et al (2015) Altered glucose metabolism in harvey-ras transformed MCF10A cells. Mol Carcinog 54(2):111–120

    Article  CAS  PubMed  Google Scholar 

  16. Taguchi M, Ptitsyn A, McLamore ES, Claussen JC (2014) Nanomaterial-mediated biosensors for monitoring glucose. J Diabetes Sci Technol 8:403–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng W et al (2013) 1,25-Dihydroxyvitamin D regulation of glucose metabolism in Harvey-ras transformed MCF10A human breast epithelial cells. J Steroid Biochem Mol Biol 138:81–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McLamore ES et al (2011) A self referencing platinum nanoparticle decorated enzyme-based microbiosensor for real time measurement of physiological glucose transport. Biosens Bioelectron 26(5):2237–2245

    Article  CAS  PubMed  Google Scholar 

  19. Shi J et al (2011) Oscillatory glucose flux in INS 1 pancreatic Î2 cells: a self-referencing microbiosensor study. Anal Biochem 411:185–193

    Article  CAS  PubMed  Google Scholar 

  20. Yan S et al (2015) MeJA affected root growth by modulation of transmembrane auxin flux in transition zone. J Plant Growth Regul 35:256–265

    Article  Google Scholar 

  21. Vanegas DC, Clark G, Cannon AE, Roux S, Chaturvedi P, McLamore ES (2015) A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems. Biosens Bioelectron 74:37–44

    Article  CAS  PubMed  Google Scholar 

  22. Porterfield D, Rickus J, Kopelman R (2006) Noninvasive approaches to measuring respiratory patterns using a PtTFPP based phase-lifetime self- referencing oxygen optrode. Proc SPIE:1–10

    Google Scholar 

  23. McLamore ES, Jaroch D, Chatni MR, Porterfield DM (2010) Self-referencing optrodes for measuring spatially resolved, real-time metabolic oxygen flux in plant systems. Planta 232(5):1087–1099

    Article  CAS  PubMed  Google Scholar 

  24. McLamore ES, Zhang W, Porterfield DM, Banks MK (2010) Membrane-aerated biofilm proton and oxygen flux during chemical toxin exposure. Environ Sci Technol 44(18):7050–7057

    Article  CAS  PubMed  Google Scholar 

  25. Sanchez BC, Ochoa-Acuña H, Porterfield DM, Sepúlveda MS (2008) Oxygen flux as an indicator of physiological stress in fathead minnow (Pimephales Promelas) embryos: a real-time biomonitoring system of water quality. Environ Sci Technol 42(18):7010–7017

    Article  CAS  PubMed  Google Scholar 

  26. Xin X, Wan Y, Wang W, Yin G, McLamore ES, Lu X (2013) A real-time, non-invasive, micro-optrode technique for detecting seed viability by using oxygen influx. Sci Rep 3:3057

    Article  PubMed  PubMed Central  Google Scholar 

  27. Porterfield D (2007) Measuring metabolism and biophysical flux in the tissue, cellular and sub-cellular domains: recent developments in self-referencing amperometry for physiological sensing. Biosens Bioelectron 15(22):1186–1196

    Article  Google Scholar 

  28. Mclamore ES, Porterfield DM (2011) Non-invasive tools for measuring metabolism and biophysical analyte transport: self-referencing physiological sensing. Chem Soc Rev 40:5308–5320

    Article  CAS  PubMed  Google Scholar 

  29. Newman I, Chen S, Porterfield D, Sun J (2012) Non-invasive flux measurements using microsensors: theory, limitations, and systems. Methods Mol Biol 913:1011–1117

    Google Scholar 

  30. McLamore ES et al (2010) A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux. J Neurosci Methods 189:14–22

    Article  CAS  PubMed  Google Scholar 

  31. McLamore ES, Porterfield DM, Banks MK (2009) Non-invasive self-referencing electrochemical sensors for quantifying real-time biofilm analyte flux. Biotechnol Bioeng 102(3):791–799

    Article  CAS  PubMed  Google Scholar 

  32. Chen J et al (2010) Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H +-ATPase and Na+/H+ antiporter under high salinity. Tree Physiol 30(12):1570–1585

    Article  CAS  PubMed  Google Scholar 

  33. Sun J et al (2009) NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol 149(2):1141–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McLamore ES et al (2010) Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J 63(6):1004–1016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the UF Opportunity Fund for supporting E.S. McLamore, and the following for supporting Y. Wan: National Basic Research Program of China (973 Program 2011CB809103, 2011CB944601), the CAS/SAFEA International Partnership Program for Creative Research Teams (20090491019), the National Natural Science Foundation of China (31000595, 30730009), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-L08, KSCX2-EW-J-1), and the China Postdoctoral Science Foundation. We also thank Dr. Miguel Angel Torres (University of North Carolina, USA.) for providing seeds of atrbohD/F double mutant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric S. McLamore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

McLamore, E.S., Porterfield, D.M., Wan, Y. (2017). Measuring Spatial and Temporal Oxygen Flux Near Plant Tissues Using a Self-Referencing Optrode. In: Jagadis Gupta, K. (eds) Plant Respiration and Internal Oxygen. Methods in Molecular Biology, vol 1670. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7292-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7292-0_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7291-3

  • Online ISBN: 978-1-4939-7292-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics