Skip to main content

A Brief History of Promoter Development for Use in Transgenic Maize Applications

  • Protocol
  • First Online:
Maize

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1676))

Abstract

Promoters regulate gene expression, and are essential biotechnology tools. Since its introduction in the mid-1990s, biotechnology has greatly enhanced maize productivity primarily through the development of insect control and herbicide tolerance traits. Additional biotechnology applications include improving seed nutrient composition, industrial protein production, therapeutic production, disease resistance, abiotic stress resistance, and yield enhancement. Biotechnology has also greatly expanded basic research into important mechanisms that govern plant growth and reproduction. Many novel promoters have been developed to facilitate this work, but only a few are widely used. Transgene optimization includes a variety of strategies some of which effect promoter structure. Recent reviews examine the state of the art with respect to transgene design for biotechnology applications. This chapter examines the use of transgene technology in maize, focusing on the way promoters are selected and used. The impact of new developments in genomic technology on promoter structure is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Que Q, Chilton MD, de Fontes CM et al (2010) Trait stacking in transgenic crops: challenges and opportunities. GM Crops 1:220–229

    Article  PubMed  Google Scholar 

  2. Peremarti A, Twyman RM, Gomez-Galera S et al (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73:363–378

    Article  CAS  PubMed  Google Scholar 

  3. Shearwin KE, Callen BP, Egan JB (2005) Transcriptional interference–a crash course. Trends Genet 21:339–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Porto MS, Pinheiro MP, Batista VG et al (2014) Plant promoters: an approach of structure and function. Mol Biotechnol 56:38–49

    Article  CAS  PubMed  Google Scholar 

  5. Nuccio M, Chen X, Conville J et al (2015) Plant trait gene expression cassette design. In: Azhakanandam K, Silverstone A, Daniell H et al (eds) Recent advancements in gene expression and enabling technologies in crop plants. Springer, New York, pp 41–77

    Chapter  Google Scholar 

  6. Burgess DG, Xu J, Freeling M (2015) Advances in understanding cis regulation of the plant gene with an emphasis on comparative genomics. Curr Opin Plant Biol 27:141–147

    Article  CAS  PubMed  Google Scholar 

  7. Hunter BG, Beatty MK, Singletary GW et al (2002) Maize opaque endosperm mutations create extensive changes in patterns of gene expression. Plant Cell 14:2591–2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cossegal M, Chambrier P, Mbelo S et al (2008) Transcriptional and metabolic adjustments in ADP-glucose pyrophosphorylase-deficient bt2 maize kernels. Plant Physiol 146:1553–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allardyce JA, Rookes JE, Hussain HI et al (2013) Transcriptional profiling of Zea mays roots reveals roles for jasmonic acid and terpenoids in resistance against Phytophthora cinnamomi. Funct Integr Genomics 13:217–228

    Article  CAS  PubMed  Google Scholar 

  10. Humbert S, Subedi S, Cohn J et al (2013) Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses. BMC Genomics 14:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soderlund C, Descour A, Kudrna D et al (2009) Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs. PLoS Genet 5:e1000740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  13. Opitz N, Marcon C, Paschold A et al (2016) Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit. J Exp Bot 67:1095–1107

    Article  CAS  PubMed  Google Scholar 

  14. Sekhon RS, Briskine R, Hirsch CN et al (2013) Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays. PLoS One 8:e61005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, de Leon N, Kaeppler SM (2011) Genome-wide atlas of transcription during maize development. Plant J 66:553–563

    Article  CAS  PubMed  Google Scholar 

  16. Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  CAS  PubMed  Google Scholar 

  17. Guilley H, Dudley RK, Jonard G et al (1982) Transcription of cauliflower mosaic virus DNA: detection of promoter sequences, and characterization of transcripts. Cell 30:763–773

    Article  CAS  PubMed  Google Scholar 

  18. McElroy D, Blowers AD, Jenes B et al (1991) Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. Mol Gen Genet 231:150–160

    Article  CAS  PubMed  Google Scholar 

  19. McElroy D, Zhang W, Cao J et al (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Last DI, Brettell RI, Chamberlain DA et al (1991) pEmu: an improved promoter for gene expression in cereal cells. Theor Appl Genet 81:581–588

    Article  CAS  PubMed  Google Scholar 

  21. Wei H, Wang ML, Moore PH et al (2003) Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J Plant Physiol 160:1241–1251

    Article  CAS  PubMed  Google Scholar 

  22. Mohanty A, Luo A, DeBlasio S et al (2009) Advancing cell biology and functional genomics in maize using fluorescent protein-tagged lines. Plant Physiol 149:601–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu D (2009) Design of gene constructs for transgenic maize. Methods Mol Biol 526:3–20

    Article  CAS  PubMed  Google Scholar 

  24. Xu J, Bräutigam A, Weber APM et al (2016) Systems analysis of cis-regulatory motifs in C4 photosynthesis genes using maize and rice leaf transcriptomic data during a process of de-etiolation. J Exp Bot 67:5105–5117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nunberg AN, Li Z, Bogue MA et al (1994) Developmental and hormonal regulation of sunflower helianthinin genes: proximal promoter sequences confer regionalized seed expression. Plant Cell 6:473–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119

    Article  PubMed  CAS  Google Scholar 

  27. Roider HG, Kanhere A, Manke T et al (2007) Predicting transcription factor affinities to DNA from a biophysical model. Bioinformatics (Oxford, England) 23:134–141

    Article  CAS  Google Scholar 

  28. Palumbo MJ, Newberg LA (2010) Phyloscan: locating transcription-regulating binding sites in mixed aligned and unaligned sequence data. Nucleic Acids Res 38:W268–W274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jia H, Li J (2012) Finding transcription factor binding motifs for coregulated genes by combining sequence overrepresentation with cross-species conservation. J Probab Stat 2012:e830575

    Article  Google Scholar 

  30. Bartlett JG, Snape JW, Harwood WA (2009) Intron-mediated enhancement as a method for increasing transgene expression levels in barley. Plant Biotechnol J 7:856–866

    Article  CAS  PubMed  Google Scholar 

  31. Mascarenhas D, Mettler IJ, Pierce DA et al (1990) Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol Biol 15:913–920

    Article  CAS  PubMed  Google Scholar 

  32. Luehrsen KR, Walbot V (1991) Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol Gen Genet 225:81–93

    Article  CAS  PubMed  Google Scholar 

  33. Omirulleh S, Abraham M, Golovkin M, Stefanov I, Karabaev MK, Mustardy L, Morocz S, Dudits D (1993) Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize. Plant Mol Biol 21:415–428

    Article  CAS  PubMed  Google Scholar 

  34. Allen GC, Spiker S, Thompson WF (2000) Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Mol Biol 43:361–376

    Article  CAS  PubMed  Google Scholar 

  35. Gallie DR, Walbot V (1992) Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucleic Acids Res 20:4631–4638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xing K, He X (2015) Reassessing the “duon” hypothesis of protein evolution. Mol Biol Evol 32:1056–1062

    Article  CAS  PubMed  Google Scholar 

  37. Koziel MG, Carozzi NB, Desai N (1996) Optimizing expression of transgenes with an emphasis on post-transcriptional events. Plant Mol Biol 32:393–405

    Article  CAS  PubMed  Google Scholar 

  38. Goodman DB, Church GM, Kosuri S (2013) Causes and effects of N-terminal codon bias in bacterial genes. Science 342:475–479

    Article  CAS  PubMed  Google Scholar 

  39. Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486

    Article  CAS  PubMed  Google Scholar 

  40. Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    Article  CAS  PubMed  Google Scholar 

  41. Verdaguer B, de Kochko A, Fux CI et al (1998) Functional organization of the cassava vein mosaic virus (CsVMV) promoter. Plant Mol Biol 37:1055–1067

    Article  CAS  PubMed  Google Scholar 

  42. Virlouvet L, Jacquemot MP, Gerentes D, Corti H, Bouton S, Gilard F, Valot B, Trouverie J, Tcherkez G, Falque M, Damerval C, Rogowsky P, Perez P, Noctor G, Zivy M, Coursol S (2011) The ZmASR1 protein influences branched-chain amino acid biosynthesis and maintains kernel yield in maize under water-limited conditions. Plant Physiol 157:917–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu Y, Wang G, Liu J et al (1999) Transfer of E. coli gutD gene into maize and regeneration of salt-tolerant transgenic plants. Sci China C Life Sci 42:90–95

    Article  CAS  PubMed  Google Scholar 

  44. Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P (2002) Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie 84:1127–1135

    Article  CAS  PubMed  Google Scholar 

  45. Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y(NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci U S A 104:16450–16455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heard JE (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nguyen TX, Sticklen M (2013) Barley HVA1 gene confers drought and salt tolerance in transgenic maize (Zea Mays L.) Adv Crop Sci Technol 1:1

    Google Scholar 

  48. Li B, Wei A, Song C, Li N, Zhang J (2008) Heterologous expression of the TsVP gene improves the drought resistance in maize. Plant Biotechnol J 6:146–159

    Article  CAS  PubMed  Google Scholar 

  49. Wang CR, Yang AF, Yue GD et al (2008) Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227:1127–1140

    Article  CAS  PubMed  Google Scholar 

  50. Amara I, Capellades M, Ludevid MD et al (2013) Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene. J Plant Physiol 170:864–873

    Article  CAS  PubMed  Google Scholar 

  51. Habben JE, Bao X, Bate NJ et al (2014) Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnol J 12:685–693

    Article  CAS  PubMed  Google Scholar 

  52. Shozo O, Ishida Y, Usami S (2004) Expression of cold-tolerant pyruvate, orthophosphate dikinase cDNA, and heterotetramer formation in transgenic maize plants. Transgenic Res 13(5):475–485

    Article  Google Scholar 

  53. Glackin CA, Grula JW (1990) Organ-specific transcripts of different size and abundance derive from the same pyruvate, orthophosphate dikinase gene in maize. Proc Natl Acad Sci U S A 87(8):3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hudspeth RL, Grula JW (1989) Structure and expression of the maize gene encoding the phosphoenolpyruvate carboxylase isozyme involved in C4 photosynthesis. Plant Mol Biol 12:579–589

    Article  CAS  PubMed  Google Scholar 

  55. Ohta S, Ishida Y, Usami S (2006) High-level expression of cold-tolerant pyruvate, orthophosphate dikinase from a genomic clone with site-directed mutations in transgenic maize. Mol Breed 18:29–38

    Article  CAS  Google Scholar 

  56. Nuccio ML, Wu J, Mowers R et al (2015) Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol 33:862–869

    Article  CAS  PubMed  Google Scholar 

  57. Fromm ME, Morrish F, Armstrong C et al (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology 8:833–839

    CAS  PubMed  Google Scholar 

  58. Vilardell J, Mundy J, Stilling B, Leroux B, Pla M, Freyssinet G, Pages M (1991) Regulation of the maize rab17 gene promoter in transgenic heterologous systems. Plant Mol Biol 17:985–993

    Article  CAS  PubMed  Google Scholar 

  59. Sheen J (1991) Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes. Plant Cell 3:225–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hamilton DA, Roy M, Rueda J et al (1992) Dissection of a pollen-specific promoter from maize by transient transformation assays. Plant Mol Biol 18:211–218

    Article  CAS  PubMed  Google Scholar 

  61. Cornejo MJ, Luth D, Blankenship KM et al (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581

    Article  CAS  PubMed  Google Scholar 

  62. Gallie DR, Young TE (1994) The regulation of gene expression in transformed maize aleurone and endosperm protoplasts: analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expression. Plant Physiol 106:929–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Register JC, Peterson DJ, Bell PJ et al (1994) Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol Biol 25:951–961

    Article  CAS  PubMed  Google Scholar 

  64. Donath M, Mendel R, Cerff R et al (1995) Intron-dependent transient expression of the maize GapA1 gene. Plant Mol Biol 28:667–676

    Article  CAS  PubMed  Google Scholar 

  65. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  CAS  PubMed  Google Scholar 

  66. Ishida Y, Saito H, Ohta S et al (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  PubMed  Google Scholar 

  67. Anthony RG, Hussey PJ (1998) Suppression of endogenous alpha and beta tubulin synthesis in transgenic maize calli overexpressing alpha and beta tubulins. Plant J 16:297–304

    Article  CAS  PubMed  Google Scholar 

  68. Selinger DA, Lisch D, Chandler VL (1998) The maize regulatory gene B-Peru contains a DNA rearrangement that specifies tissue-specific expression through both positive and negative promoter elements. Genetics 149:1125–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Van Breusegem F, Kushnir S, Slooten L et al (1998) Processing of a chimeric protein in chloroplasts is different in transgenic maize and tobacco plants. Plant Mol Biol 38:491–496

    Article  PubMed  Google Scholar 

  70. van der Geest AHM, Petolino JF (1998) Expression of a modified green fluorescent protein gene in transgenic maize plants and progeny. Plant Cell Rep 17:760–764

    Article  Google Scholar 

  71. Cocciolone SM, Sidorenko LV, Chopra S et al (2000) Hierarchical patterns of transgene expression indicate involvement of developmental mechanisms in the regulation of the maize P1-rr promoter. Genetics 156:839–846

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Petolino JF, Young S, Hopkins N et al (2000) Expression of murine adenosine deaminase (ADA) in transgenic maize. Transgenic Res 9:1–9

    Article  CAS  PubMed  Google Scholar 

  73. Raizada MN, Walbot V (2000) The late developmental pattern of Mu transposon excision is conferred by a cauliflower mosaic virus 35S-driven MURA cDNA in transgenic maize. Plant Cell 12:5–21

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sidorenko LV, Li X, Cocciolone SM et al (2000) Complex structure of a maize Myb gene promoter: functional analysis in transgenic plants. Plant J 22:471–482

    Article  CAS  PubMed  Google Scholar 

  75. Alarcon CM, Umthun AR, Register JC (2001) Use of epitope tags for routine analysis of transgene expression. Transgenic Res 10:183–192

    Article  CAS  PubMed  Google Scholar 

  76. Kausch AP, Owen TP, Zachwieja SJ et al (2001) Mesophyll-specific, light and metabolic regulation of the C4 PPCZm1 promoter in transgenic maize. Plant Mol Biol 45:1–15

    Article  CAS  PubMed  Google Scholar 

  77. Unger E, Betz S, Xu R et al (2001) Selection and orientation of adjacent genes influences DAM-mediated male sterility in transformed maize. Transgenic Res 10:409–422

    Article  CAS  PubMed  Google Scholar 

  78. Sidorenko L, Bruce W, Maddock S et al (2003) Functional analysis of two matrix attachment region (MAR) elements in transgenic maize plants. Transgenic Res 12:137–154

    Article  CAS  PubMed  Google Scholar 

  79. Torney F, Partier A, Says-Lesage V et al (2004) Heritable transgene expression pattern imposed onto maize ubiquitin promoter by maize adh-1 matrix attachment regions: tissue and developmental specificity in maize transgenic plants. Plant Cell Rep 22:931–938

    Article  CAS  PubMed  Google Scholar 

  80. Gutierrez-Marcos JF, Costa LM, Biderre-Petit C, Khbaya B, O’SUlliavan DM, Wormwald M, Perez P, Dickinson HG (2004) Maternally expressed gene1 is a novel maize endosperm transfer cell-specific gene with a maternal parent-of-origin pattern of expression. Plant Cell 16:1288–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. José-Estanyol M, Pérez P, Puigdomènech P (2005) Expression of the promoter of HyPRP, an embryo-specific gene from Zea mays in maize and tobacco transgenic plants. Gene 356:146–152

    Article  PubMed  CAS  Google Scholar 

  82. Chen X, Wang Z, Gu R et al (2007) Isolation of the maize Zpu1 gene promoter and its functional analysis in transgenic tobacco plants. Plant Cell Rep 26:1555–1565

    Article  CAS  PubMed  Google Scholar 

  83. Shepherd CT, Vignaux N, Peterson JM et al (2008) Green fluorescent protein as a tissue marker in transgenic maize seed. Cereal Chem J 85:188–195

    Article  CAS  Google Scholar 

  84. Gallavotti A, Yang Y, Schmidt RJ et al (2008) The relationship between auxin transport and maize branching. Plant Physiol 147:1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sattarzadeh A, Fuller J, Moguel S et al (2010) Transgenic maize lines with cell-type specific expression of fluorescent proteins in plastids. Plant Biotechnol J 8:112–125

    Article  CAS  PubMed  Google Scholar 

  86. Srilunchang K, Krohn NG, Dresselhaus T (2010) DiSUMO-like DSUL is required for nuclei positioning, cell specification and viability during female gametophyte maturation in maize. Development 137:333–345

    Article  CAS  PubMed  Google Scholar 

  87. Je BI, Gruel J, Lee YK et al (2016) Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat Genet 48:785–791

    Article  CAS  PubMed  Google Scholar 

  88. Kelliher T, Starr D, Wang W et al (2016) Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 7:414

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kelliher T, Starr D, Richbourg L et al (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105–109

    Article  CAS  PubMed  Google Scholar 

  90. Vilardell J, Martinez-Zapater JM, Goday A, Arenas C, Pages M (1994) Regulation of the rab17 gene promoter in transgenic Arabidopsis wild-type, ABA-deficient and ABA-insensitive mutants. Plant Mol Biol 24:561–569

    Article  CAS  PubMed  Google Scholar 

  91. Guerrero FD, Crossland L, Smutzer GS et al (1990) Promoter sequences from a maize pollen-specific gene direct tissue-specific transcription in tobacco. Mol Gen Genet 224:161–168

    Article  CAS  PubMed  Google Scholar 

  92. Prakash NS, Prasad V, Chidambram TP et al (2008) Effect of promoter driving selectable marker on corn transformation. Transgenic Res 17:695–704

    Article  PubMed  CAS  Google Scholar 

  93. Jefferson RA (1989) The GUS reporter gene system. Nature 342:837–838

    Article  CAS  PubMed  Google Scholar 

  94. Wenck A et al (2003) Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Rep 22:244–251

    Article  CAS  PubMed  Google Scholar 

  95. Singer SD, Liu Z, Cox KD (2012) Minimizing the unpredictability of transgene expression in plants: the role of genetic insulators. Plant Cell Rep 31:13–25

    Article  CAS  PubMed  Google Scholar 

  96. Sheen J (1999) C4 Gene expression. Annu Rev Plant Physiol Plant Mol Biol 50:187–217

    Article  CAS  PubMed  Google Scholar 

  97. Mohanty A, Yang Y, Luo A et al (2009) Methods for generation and analysis of fluorescent protein-tagged maize lines. In: Scott MP (ed) Transgenic maize. Humana, New York, pp 71–89

    Chapter  Google Scholar 

  98. Krishnakumar V, Choi Y, Beck E et al (2015) A maize database resource that captures tissue-specific and subcellular-localized gene expression, via fluorescent tags and confocal imaging (Maize Cell Genomics Database). Plant Cell Physiol 56:e12

    Article  PubMed  CAS  Google Scholar 

  99. Ravi M, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–619

    Article  CAS  PubMed  Google Scholar 

  100. Capellades M, Torres MA, Bastisch I et al (1996) The maize caffeic acid O-methyltransferase gene promoter is active in transgenic tobacco and maize plant tissues. Plant Mol Biol 31:307–322

    Article  CAS  PubMed  Google Scholar 

  101. Piquemal J, Chamayou S, Nadaud I et al (2002) Down-regulation of caffeic acid o-methyltransferase in maize revisited using a transgenic approach. Plant Physiol 130:1675–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Biswas GCG, Ransom C, Sticklen M (2006) Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize plants. Plant Sci 171:617–623

    Article  CAS  Google Scholar 

  103. Clough RC, Pappu K, Thompson K et al (2006) Manganese peroxidase from the white-rot fungus Phanerochaete chrysosporium is enzymatically active and accumulates to high levels in transgenic maize seed. Plant Biotechnol J 4:53–62

    Article  CAS  PubMed  Google Scholar 

  104. Gray BN, Bougri O, Carlson AR et al (2011) Global and grain-specific accumulation of glycoside hydrolase family 10 xylanases in transgenic maize (Zea mays). Plant Biotechnol J 9:1100–1108

    Article  CAS  PubMed  Google Scholar 

  105. Fornale S, Capellades M, Encina A et al (2012) Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase. Mol Plant 5:817–830

    Article  CAS  PubMed  Google Scholar 

  106. Murry LE, Elliott LG, Capitant SA et al (1993) Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Biotechnology 11:1559–1564

    CAS  PubMed  Google Scholar 

  107. Bohorova N, Zhang W, Julstrom P et al (1999) Production of transgenic tropical maize with cryIAb and cryIAc genes via microprojectile bombardment of immature embryos. Theor Appl Genet 99:437–444

    Article  CAS  PubMed  Google Scholar 

  108. Bai Y, Yang H, Qu L et al (2008) Inverted-repeat transgenic maize plants resistant to sugarcane mosaic virus. Front Agric China 2:125–130

    Article  Google Scholar 

  109. Liu X, Tan Z, Li W et al (2009) Cloning and transformation of SCMV CP gene and regeneration of transgenic maize plants showing resistance to SCMV strain MDB. Afr J Biotechnol 8(16):3747–3753

    CAS  Google Scholar 

  110. Zhang Z-Y, Fu F-L, Gou L et al (2010) RNA interference-based transgenic maize resistant to maize dwarf mosaic virus. J Plant Biol 53:297–305

    Article  CAS  Google Scholar 

  111. Zhang ZY, Yang L, Zhou SF et al (2011) Improvement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interference. J Biotechnol 153:181–187

    Article  CAS  PubMed  Google Scholar 

  112. Allen A, Islamovic E, Kaur J et al (2011) Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut. Plant Biotechnol J 9:857–864

    Article  CAS  PubMed  Google Scholar 

  113. Zhang Y, Liu Y, Ren Y et al (2013) Overexpression of a novel Cry1Ie gene confers resistance to Cry1Ac-resistant cotton bollworm in transgenic lines of maize. Plant Cell Tissue Organ Cult 115:151–158

    Article  CAS  Google Scholar 

  114. Cocciolone SM, Nettleton D, Snook ME et al (2005) Transformation of maize with the p1 transcription factor directs production of silk maysin, a corn earworm resistance factor, in concordance with a hierarchy of floral organ pigmentation. Plant Biotechnol J 3:225–235

    Article  CAS  PubMed  Google Scholar 

  115. Johnson ET, Berhow MA, Dowd PF (2007) Expression of a maize Myb transcription factor driven by a putative silk-specific promoter significantly enhances resistance to Helicoverpa zea in transgenic maize. J Agric Food Chem 55:2998–3003

    Article  CAS  PubMed  Google Scholar 

  116. Cao X, Lu Y, Di D et al (2013) Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E. coli. PLoS One 8:e60829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Naqvi S, Ramessar K, Farre G et al (2011) High-value products from transgenic maize. Biotechnol Adv 29:40–53

    Article  CAS  PubMed  Google Scholar 

  118. Segal G, Song R, Messing J (2003) A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165:387–397

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen Z, Young TE, Ling J et al (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci U S A 100:3525–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Frizzi A, Huang S, Gilbertson LA et al (2008) Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. Plant Biotechnol J 6:13–21

    CAS  PubMed  Google Scholar 

  121. Naqvi S, Farre G, Zhu C et al (2011) Simultaneous expression of Arabidopsis rho-hydroxyphenylpyruvate dioxygenase and MPBQ methyltransferase in transgenic corn kernels triples the tocopherol content. Transgenic Res 20:177–181

    Article  CAS  PubMed  Google Scholar 

  122. Cahoon EB, Hall SE, Ripp KG et al (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21:1082–1087

    Article  CAS  PubMed  Google Scholar 

  123. Rascon-Cruz Q, Sinagawa-Garcia S, Osuna-Castro JA et al (2004) Accumulation, assembly, and digestibility of amarantin expressed in transgenic tropical maize. Theor Appl Genet 108:335–342

    Article  CAS  PubMed  Google Scholar 

  124. Bicar EH, Woodman-Clikeman W, Sangtong V et al (2008) Transgenic maize endosperm containing a milk protein has improved amino acid balance. Transgenic Res 17:59–71

    Article  CAS  PubMed  Google Scholar 

  125. Zheng P, Allen WB, Roesler K et al (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372

    Article  CAS  PubMed  Google Scholar 

  126. Zhang Y, Xu X, Zhou X et al (2013) Overexpression of an acidic endo-beta-1,3-1,4-glucanase in transgenic maize seed for direct utilization in animal feed. PLoS One 8:e81993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Huang S, Adams WR, Zhou Q et al (2004) Improving nutritional quality of maize proteins by expressing sense and antisense zein genes. J Agric Food Chem 52:1958–1964

    Article  CAS  PubMed  Google Scholar 

  128. Houmard NM, Mainville JL, Bonin CP et al (2007) High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnol J 5:605–614

    Article  CAS  PubMed  Google Scholar 

  129. Wu XR, Kenzior A, Willmot D et al (2007) Altered expression of plant lysyl tRNA synthetase promotes tRNA misacylation and translational recoding of lysine. Plant J 50:627–636

    Article  CAS  PubMed  Google Scholar 

  130. Reyes AR, Bonin CP, Houmard NM et al (2009) Genetic manipulation of lysine catabolism in maize kernels. Plant Mol Biol 69:81–89

    Article  CAS  PubMed  Google Scholar 

  131. Huang S, Frizzi A, Florida CA et al (2006) High lysine and high tryptophan transgenic maize resulting from the reduction of both 19- and 22-kD alpha-zeins. Plant Mol Biol 61:525–535

    Article  CAS  PubMed  Google Scholar 

  132. Yu J, Peng P, Zhang X et al (2005) Seed-specific expression of the lysine-rich protein gene sb401 significantly increases both lysine and total protein content in maize seeds. Food Nutr Bull 26:S312–S316

    Article  Google Scholar 

  133. Lang Z, Zhao Q, Yu J et al (2004) Cloning of potato SBgLR gene and its intron splicing in transgenic maize. Plant Sci 166:1227–1233

    Article  CAS  Google Scholar 

  134. Drakakaki G, Marcel S, Glahn RP et al (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59:869–880

    Article  CAS  PubMed  Google Scholar 

  135. Zhu C, Naqvi S, Breitenbach J et al (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci U S A 105:18232–18237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Aluru M, Xu Y, Guo R et al (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59:3551–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Naqvi S, Zhu C, Farre G et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang Z, Chen X, Wang J et al (2007) Increasing maize seed weight by enhancing the cytoplasmic ADP-glucose pyrophosphorylase activity in transgenic maize plants. Plant Cell Tissue Organ Cult 88:83–92

    Article  CAS  Google Scholar 

  139. Li N, Zhang S, Zhao Y et al (2011) Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta 233:241–250

    Article  CAS  PubMed  Google Scholar 

  140. Guo M, Rupe MA, Wei J et al (2014) Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot 65:249–260

    Article  CAS  PubMed  Google Scholar 

  141. Zhong H, Zhang S, Warkentin D et al (1996) Analysis of the functional activity of the 1.4-kb 5′-region of the rice actin 1 gene in stable transgenic plants of maize (Zea mays L.) Plant Sci 116:73–84

    Article  CAS  Google Scholar 

  142. Rasco-Gaunt S, Liu D, Li CP et al (2003) Characterisation of the expression of a novel constitutive maize promoter in transgenic wheat and maize. Plant Cell Rep 21:569–576

    CAS  PubMed  Google Scholar 

  143. Lee L-Y, Kononov ME, Bassuner B et al (2007) Novel plant transformation vectors containing the superpromoter. Plant Physiol 145:1294–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Coussens G, Aesaert S, Verelst W et al (2012) Brachypodium distachyon promoters as efficient building blocks for transgenic research in maize. J Exp Bot 63:4263–4273

    Article  CAS  PubMed  Google Scholar 

  145. Grosset J, Alary R, Gautier MF et al (1997) Characterization of a barley gene coding for an alpha-amylase inhibitor subunit (CMd protein) and analysis of its promoter in transgenic tobacco plants and in maize kernels by microprojectile bombardment. Plant Mol Biol 34:331–338

    Article  CAS  PubMed  Google Scholar 

  146. Russell DA, Fromm ME (1997) Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice. Transgenic Res 6:157–168

    Article  CAS  PubMed  Google Scholar 

  147. Hueros G, Gomez E, Cheikh N et al (1999) Identification of a promoter sequence from the BETL1 gene cluster able to confer transfer-cell-specific expression in transgenic maize. Plant Physiol 121:1143–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Muhitch MJ, Liang H, Rastogi R et al (2002) Isolation of a promoter sequence from the glutamine synthetase 1–2 gene capable of conferring tissue-specific gene expression in transgenic maize. Plant Sci 163:865–872

    Article  CAS  Google Scholar 

  149. Shepherd CT, Scott MP (2009) Construction and evaluation of a maize (Zea mays) chimaeric promoter with activity in kernel endosperm and embryo. Biotechnol Appl Biochem 52:233–243

    Article  CAS  PubMed  Google Scholar 

  150. Streatfield SJ, Bray J, Love RT, Horn ME, Lane JR, Drees CF, Egelkrout EM, Howard JA (2012) Identification of maize embryo-preferred promoters suitable for high-level heterologous protein production. GM Crops 1:162–172

    Article  Google Scholar 

  151. Bilgin M, Dedeoĝlu D, Omirulleh S et al (1999) Meristem, cell division and S phase-dependent activity of wheat histone H4 promoter in transgenic maize plants. Plant Sci 143:35–44

    Article  CAS  Google Scholar 

  152. Taniguchi M, Izawa K, Ku MS et al (2000) The promoter for the maize C4 pyruvate, orthophosphate dikinase gene directs cell- and tissue-specific transcription in transgenic maize plants. Plant Cell Physiol 41:42–48

    Article  CAS  PubMed  Google Scholar 

  153. Coelho GT, Carneiro NP, Karthikeyan AS et al (2010) A phosphate transporter promoter from Arabidopsis thaliana AtPHT1; 4 gene drives preferential gene expression in transgenic maize roots under phosphorus starvation. Plant Mol Biol Rep 28:717–723

    Article  CAS  Google Scholar 

  154. Du H, Zhang Z, Li J (2010) Isolation and functional characterization of a waterlogging-induced promoter from maize. Plant Cell Rep 29:1269–1275

    Article  CAS  PubMed  Google Scholar 

  155. Hood EE, Witcher DR, Maddock S et al (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed 3:291–306

    Article  CAS  Google Scholar 

  156. Yang SH, Moran DL, Jia HW et al (2002) Expression of a synthetic porcine alpha-lactalbumin gene in the kernels of transgenic maize. Transgenic Res 11:11–20

    Article  PubMed  Google Scholar 

  157. Hood EE, Bailey MR, Beifuss K et al (2003) Criteria for high-level expression of a fungal laccase gene in transgenic maize. Plant Biotechnol J 1:129–140

    Article  CAS  PubMed  Google Scholar 

  158. Bailey MR, Woodard SL, Callaway E et al (2004) Improved recovery of active recombinant laccase from maize seed. Appl Microbiol Biotechnol 63:390–397

    Article  CAS  PubMed  Google Scholar 

  159. Lamphear BJ, Barker DK, Brooks CA et al (2005) Expression of the sweet protein brazzein in maize for production of a new commercial sweetener. Plant Biotechnol J 3:103–114

    Article  CAS  PubMed  Google Scholar 

  160. Woodard SL, Mayor JM, Bailey MR et al (2003) Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 38:123–130

    Article  CAS  PubMed  Google Scholar 

  161. Xu X, Gan Q, Clough RC et al (2011) Hydroxylation of recombinant human collagen type I alpha 1 in transgenic maize co-expressed with a recombinant human prolyl 4-hydroxylase. BMC Biotechnol 11:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Caimi PG, McCole LM, Klein TM et al (1996) Fructan accumulation and sucrose metabolism in transgenic maize endosperm expressing a Bacillus amyloliquefaciens SacB gene. Plant Physiol 110:355–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Coleman CE, Clore AM, Ranch JP et al (1997) Expression of a mutant alpha-zein creates the floury2 phenotype in transgenic maize. Proc Natl Acad Sci U S A 94:7094–7097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Merlo AO, Cowen N, Delate T et al (1998) Ribozymes targeted to stearoyl-ACP delta9 desaturase mRNA produce heritable increases of stearic acid in transgenic maize leaves. Plant Cell 10:1603–1622

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Sangtong V, Moran L, Chikwamba R et al (2002) Expression and inheritance of the wheat Glu-1DX5 gene in transgenic maize. Theor Appl Genet 105:937–945

    Article  CAS  PubMed  Google Scholar 

  166. Zhang S, Dong JG, Wang T et al (2007) High level accumulation of alpha-glucan in maize kernels by expressing the gtfD gene from Streptococcus mutans. Transgenic Res 16:467–478

    Article  CAS  PubMed  Google Scholar 

  167. Zhang J, Martin JM, Beecher B et al (2009) Seed-specific expression of the wheat puroindoline genes improves maize wet milling yields. Plant Biotechnol J 7:733–743

    Article  CAS  PubMed  Google Scholar 

  168. Zhong G-Y, Peterson D, Delaney DE et al (1999) Commercial production of aprotinin in transgenic maize seeds. Mol Breed 5:345–356

    Article  CAS  Google Scholar 

  169. Chikwamba R, McMurray J, Shou H et al (2002) Expression of a synthetic E. coli heat-labile enterotoxin B sub-unit (LT-B) in maize. Mol Breed 10:253–265

    Article  CAS  Google Scholar 

  170. Chikwamba RK, Scott MP, Mejia LB et al (2003) Localization of a bacterial protein in starch granules of transgenic maize kernels. Proc Natl Acad Sci U S A 100:11127–11132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Guerrero-Andrade O, Loza-Rubio E, Olivera-Flores T et al (2006) Expression of the Newcastle disease virus fusion protein in transgenic maize and immunological studies. Transgenic Res 15:455–463

    Article  CAS  PubMed  Google Scholar 

  172. Rademacher T, Sack M, Arcalis E et al (2008) Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol J 6:189–201

    Article  CAS  PubMed  Google Scholar 

  173. Ramessar K, Rademacher T, Sack M et al (2008) Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proc Natl Acad Sci U S A 105:3727–3732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Loza-Rubio E, Rojas-Anaya E, Lopez J et al (2012) Induction of a protective immune response to rabies virus in sheep after oral immunization with transgenic maize, expressing the rabies virus glycoprotein. Vaccine 30:5551–5556

    Article  CAS  PubMed  Google Scholar 

  175. Anthony RG, Hussey PJ (1999) Double mutation in eleusine indica alpha-tubulin increases the resistance of transgenic maize calli to dinitroaniline and phosphorothioamidate herbicides. Plant J 18:669–674

    Article  CAS  PubMed  Google Scholar 

  176. Liu Y, Zhang Y, Liu Y et al (2015) Metabolic effects of glyphosate on transgenic maize expressing a G2-EPSPS gene from Pseudomonas fluorescens. J Plant Biochem Biotechnol 24:233–241

    Article  CAS  Google Scholar 

  177. Stavolone L, Kononova M, Pauli S, Ragozzino A, de Haan P, Milligan S, Lawton K, Hohn T (2003) Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops. Plant Mol Biol 53:703–713

    Article  Google Scholar 

  178. Huang Q, Hartung JS (2001) Cloning and sequence analysis of an infectious clone of Citrus yellow mosaic virus that can infect sweet orange via Agrobacterium-mediated inoculation. J Gen Virol 82:2549–2558

    Article  CAS  PubMed  Google Scholar 

  179. Lheureux F, Laboureau N, Muller E et al (2007) Molecular characterization of banana streak acuminata Vietnam virus isolated from Musa acuminata siamea (banana cultivar). Arch Virol 152:1409–1416

    Article  CAS  PubMed  Google Scholar 

  180. Maiti IB, Shepherd RJ (1998) Isolation and expression analysis of peanut chlorotic streak caulimovirus (PClSV) full-length transcript (FLt) promoter in transgenic plants. Biochem Biophys Res Commun 244:440–444

    Article  CAS  PubMed  Google Scholar 

  181. Cigan AM, Albertsen MC (1997) Transgenic plants and DNA comprising anther specific promoter 5126 and gene to achieve male sterility. http://www.google.com/patents/US5689051

  182. Allen RL, Lonsdale DM (1993) Molecular characterization of one of the maize polygalacturonase gene family members which are expressed during late pollen development. Plant J 3:261–271

    Article  CAS  PubMed  Google Scholar 

  183. Kalla R, Shimamoto K, Potter R et al (1994) The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice. Plant J 6:849–860

    Article  CAS  PubMed  Google Scholar 

  184. Ritchie SW (2004) Maize metallothionein gene and promoter. http://www.google.com/patents/US6774282

  185. Hertig C, Rebmann G, Bull J et al (1991) Sequence and tissue-specific expression of a putative peroxidase gene from wheat (Triticum aestivum L.) Plant Mol Biol 16:171–174

    Article  CAS  PubMed  Google Scholar 

  186. Shi G, Chavas J-P, Lauer J (2013) Commercialized transgenic traits, maize productivity and yield risk. Nat Biotechnol 31:111–114

    Article  PubMed  CAS  Google Scholar 

  187. Eichten SR, Schmitz RJ, Springer NM (2014) Epigenetics: beyond chromatin modifications and complex genetic regulation. Plant Physiol 165:933–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Eichten SR, Swanson-Wagner RA, Schnable JC, Waters AJ, Hermanson PJ, Liu S, Yeh CT, Jia Y, Gendler K, Freeling M, Schnable PS, Vaughn MW, Springer NM (2011) Heritable epigenetic variation among maize inbreds. PLoS Genet 7:e1002372. doi:10.1371/journal.pgen.1002372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Li Q, Eichten SR, Hermanson PJ et al (2014) Genetic perturbation of the maize methylome. Plant Cell 26:4602–4616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Liu W, Stewart CN (2016) Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 37:36–44

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Nuccio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Nuccio, M.L. (2018). A Brief History of Promoter Development for Use in Transgenic Maize Applications. In: Lagrimini, L. (eds) Maize. Methods in Molecular Biology, vol 1676. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7315-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7315-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7314-9

  • Online ISBN: 978-1-4939-7315-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics