Skip to main content

High-Dimensional Modeling for Cytometry: Building Rock Solid Models Using GemStone™ and Verity Cen-se’™ High-Definition t-SNE Mapping

  • Protocol
  • First Online:
Flow Cytometry Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1678))

Abstract

This chapter outlines how to approach the complex tasks associated with designing models for high-dimensional cytometry data. Unlike gating approaches, modeling lends itself to automation and accounts for measurement overlap among cellular populations. Designing these models is now easier because of a new technique called high-definition t-SNE mapping. Nontrivial examples are provided that serve as a guide to create models that are consistent with data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller D, Hunsberger B, Bagwell C (2012) Automated analysis of GPI-deficient leukocyte flow cytometric data using GemStone. Cytometry B Clin Cytom 82B:319–324

    Article  CAS  Google Scholar 

  2. Wong L, Hunsberger BC, Bruce Bagwell C, Davis BH (2013) Automated quantitation of fetomaternal hemorrhage by flow cytometry for HbF-containing fetal red blood cells using probability state modeling. Int J Lab Hematol 35(5):548–554. doi:10.1111/ijlh.12060

    Article  CAS  Google Scholar 

  3. Wong L, Hill BL, Hunsberger BC, Bagwell CB, Curtis AD, Davis BH (2014) Automated analysis of flow cytometric data for measuring neutrophil CD64 expression using a multi-instrument compatible probability state model. Cytometry B Clin Cytom. doi:10.1002/cyto.b.21217

  4. Inokuma MS, Maino VC, Bagwell CB (2013) Probability state modeling of memory CD8(+) T-cell differentiation. J Immunol Methods 397(1-2):8–17. doi:10.1016/j.jim.2013.08.003

    Article  CAS  Google Scholar 

  5. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  6. van der Maaten L (2009) Learning a parametric embedding by preserving local structure. Paper presented at the AISTATS, TiCC, Tilburg University P.O. Box 90153, 5000 LE Tilburg, The Netherlands

    Google Scholar 

  7. van der Maaten L (2014) Accelerating t-SNE using tree-based algorithms. J Mach Learn Res 15:1–21

    Google Scholar 

  8. Bagwell CB, Hunsberger BC, Herbert DJ, Munson ME, Hill BL, Bray CM, Preffer FI (2015) Probability state modeling theory. Cytometry A. doi:10.1002/cyto.a.22687

  9. Bagwell C (2001) Data analysis through modeling. Curr Protoc Cytometry Chapter 10:Unit 10.17. doi:10.1002/0471142956.cy1007s01

    Google Scholar 

  10. Bagwell C (2010) Probability state modeling: a new paradigm for cytometric analysis. In: Litwin V, Marder P (eds) Flow cytometry in drug discovery and development. John Wiley and Sons Inc, Hoboken, NJ, p 281

    Chapter  Google Scholar 

  11. Bagwell CB (2011) Breaking the dimensionality barrier. Methods Mol Biol 699:31–51. doi:10.1007/978-1-61737-950-5_2

    Article  CAS  Google Scholar 

  12. Bagwell C, Hill B, Wood B, Wallace P, Alrazzak M, Kelliher A, Preffer F (2015) Human B-cell and progenitor stages as determined by probability state modeling of multidimensional cytometry data. Cytometry B Clin Cytom 88(4):214–226

    Article  Google Scholar 

  13. Loken M, Shah V, Dattilo K, Civin C (1987) Flow cytometric analysis of human bone marrow II: normal lymphocyte development. Blood 70:1316–1324

    CAS  Google Scholar 

  14. Loken M, Wells D (2000) Normal antigen expression in hematopoiesis. In: Stewart C, Nicholson J (eds) Immunophenotyping. Wiley-Liss Inc, Hoboken, NJ, pp 133–160

    Google Scholar 

  15. Hinton G (2002) Roweis S Stochastic neighbor embedding. NIPS, In, pp 833–840

    Google Scholar 

  16. Yianilos PN (1993) Data structures and algorithms for nearest neighbor search in general metric spaces. Proceedings of the ACM-SIAM symposium on discrete algorithms, pp 311–321

    Google Scholar 

  17. Meyer SL (1975) Data analysis for scientists and engineers. John Wiley & Sons, New York, NY

    Google Scholar 

  18. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    Article  Google Scholar 

  19. Barnes J, Hut P (1986) A hierarchical O(N log N) force-calculation algorithm. Nature 324(4):446–449

    Article  Google Scholar 

  20. Bagwell CB, Hill BL, Herbert DJ, Bray CM, Hunsberger BC (2016) Sometimes simpler is better: VLog, a general but easy-to-implement log-like transform for cytometry. Cytometry A 89(12):1097–1105. doi:10.1002/cyto.a.23017

    Article  Google Scholar 

  21. Maecker HT, McCoy JP, Nussenblatt R (2012) Standardizing immunophenotyping for the Human Immunology Project. Nat Rev Immunol 12(3):191–200. doi:10.1038/nri3158

    CAS  Google Scholar 

  22. Appay V, van Lier RA, Sallusto F, Roederer M (2008) Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 73(11):975–983. doi:10.1002/cyto.a.20643

    Article  Google Scholar 

  23. Blom B, Spits H (2006) Development of human lymphoid cells. Annu Rev Immunol 24:287–320. doi:10.1146/annurev.immunol.24.021605.090612

    Article  CAS  Google Scholar 

  24. Poli A, Michel T, Theresine M, Andres E, Hentges F, Zimmer J (2009) CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 126(4):458–465. doi:10.1111/j.1365-2567.2008.03027.x

    Article  CAS  Google Scholar 

Download references

Disclaimer

This author works for the company that develops and sells GemStone™. Every effort has been made to discuss general modeling concepts that would be applicable to other modeling packages if and when they become available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bruce Bagwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bruce Bagwell, C. (2018). High-Dimensional Modeling for Cytometry: Building Rock Solid Models Using GemStone™ and Verity Cen-se’™ High-Definition t-SNE Mapping. In: Hawley, T., Hawley, R. (eds) Flow Cytometry Protocols. Methods in Molecular Biology, vol 1678. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7346-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7346-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7344-6

  • Online ISBN: 978-1-4939-7346-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics