Skip to main content

Distinguishing States of Arrest: Genome-Wide Descriptions of Cellular Quiescence Using ChIP-Seq and RNA-Seq Analysis

  • Protocol
  • First Online:
Cellular Quiescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1686))

Abstract

Regenerative potential in adult stem cells is closely associated with the establishment of—and exit from—a temporary state of quiescence. Emerging evidence not only provides a rationale for the link between lineage determination programs and cell cycle regulation but also highlights the understanding of quiescence as an actively maintained cellular program, encompassing networks and mechanisms beyond mitotic inactivity or metabolic restriction. Interrogating the quiescent genome and transcriptome using deep-sequencing technologies offers an unprecedented view of the global mechanisms governing this reversibly arrested cellular state and its importance for cell identity. While many efforts have identified and isolated pure target stem cell populations from a variety of adult tissues, there is a growing appreciation that their isolation from the stem cell niche in vivo leads to activation and loss of hallmarks of quiescence. Thus, in vitro models that recapitulate the dynamic reversibly arrested stem cell state in culture and lend themselves to comparison with the activated or differentiated state are useful templates for genome-wide analysis of the quiescence network.

In this chapter, we describe the methods that can be adopted for whole genome epigenomic and transcriptomic analysis of cells derived from one such established culture model where mouse myoblasts are triggered to enter or exit quiescence as homogeneous populations. The ability to synchronize myoblasts in G0 permits insights into the genome in “deep quiescence.” The culture methods for generating large populations of quiescent myoblasts in either 2D or 3D culture formats are described in detail in a previous chapter in this series (Arora et al. Methods Mol Biol 1556:283–302, 2017). Among the attractive features of this model are that genes isolated from quiescent myoblasts in culture mark satellite cells in vivo (Sachidanandan et al., J Cell Sci 115:2701–2712, 2002) providing a validation of its approximation of the molecular state of true stem cells. Here, we provide our working protocols for ChIP-seq and RNA-seq analysis, focusing on those experimental elements that require standardization for optimal analysis of chromatin and RNA from quiescent myoblasts, and permitting useful and revealing comparisons with proliferating myoblasts or differentiated myotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cavallucci V, Fidaleo M, Pani G (2016) Neural stem cells and nutrients: poised between quiescence and exhaustion. Trends Endocrinol Metab 27:756–769. doi:10.1016/j.tem.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  2. Daignan-Fornier B, Sagot I (2011) Proliferation/quiescence: when to start? Where to stop? What to stock? Cell Div 6:20. doi:10.1186/1747-1028-6-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14:329–340. doi:10.1038/nrm3591

    Article  CAS  PubMed  Google Scholar 

  4. Rumman M, Dhawan J, Kassem M (2015) Concise review: quiescence in adult stem cells: biological significance and relevance to tissue regeneration. Stem Cells Dayt Ohio 33:2903–2912. doi:10.1002/stem.2056

    Article  Google Scholar 

  5. Coller HA, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol. doi:10.1371/journal.pbio.0040083

  6. Yao G (2014) Modelling mammalian cellular quiescence. Interf Focus. doi:10.1098/rsfs.2013.0074

  7. García-Prat L, Martínez-Vicente M, Perdiguero E et al (2016) Autophagy maintains stemness by preventing senescence. Nature 529:37–42. doi:10.1038/nature16187

    Article  PubMed  Google Scholar 

  8. Sousa-Victor P, Gutarra S, García-Prat L et al (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506:316–321. doi:10.1038/nature13013

    Article  CAS  PubMed  Google Scholar 

  9. Yanagida M (2009) Cellular quiescence: are controlling genes conserved? Trends Cell Biol 19:705–715. doi:10.1016/j.tcb.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  10. Gray JV, Petsko GA, Johnston GC et al (2004) “Sleeping Beauty”: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68:187–206. doi:10.1128/MMBR.68.2.187-206.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dhawan J, Laxman S (2015) Decoding the stem cell quiescence cycle--lessons from yeast for regenerative biology. J Cell Sci 128:4467–4474. doi:10.1242/jcs.177758

    Article  CAS  PubMed  Google Scholar 

  12. Rodgers JT, King KY, Brett JO et al (2014) mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature 510:393–396. doi:10.1038/nature13255

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885. doi:10.1126/science.1110542

    Article  CAS  PubMed  Google Scholar 

  14. Wagers AJ, Weissman IL (2004) Plasticity of adult stem cells. Cell 116:639–648. doi:10.1016/S0092-8674(04)00208-9

    Article  CAS  PubMed  Google Scholar 

  15. Yu H, Fang D, Kumar SM et al (2006) Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 168:1879–1888. doi:10.2353/ajpath.2006.051170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Freter R, Osawa M, Nishikawa S-I (2010) Adult stem cells exhibit global suppression of RNA polymerase II serine-2 phosphorylation. Stem Cells 28:1571–1580. doi:10.1002/stem.476

    Article  CAS  PubMed  Google Scholar 

  17. Venezia TA, Merchant AA, Ramos CA et al (2004) Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol 2:e301. doi:10.1371/journal.pbio.0020301

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15:666–673. doi:10.1016/j.tcb.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  19. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderson J, Pilipowicz O (2002) Activation of muscle satellite cells in single-fiber cultures. Nitric Oxide Biol Chem 7:36–41

    Article  CAS  Google Scholar 

  21. Zammit PS, Relaix F, Nagata Y et al (2006) Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119:1824–1832. doi:10.1242/jcs.02908

    Article  CAS  PubMed  Google Scholar 

  22. Moyle LA, Zammit PS (2014) Isolation, culture and immunostaining of skeletal muscle fibres to study myogenic progression in satellite cells. Methods Mol Biol Clifton N J 1210:63–78. doi:10.1007/978-1-4939-1435-7_6

    Article  CAS  Google Scholar 

  23. Gromova A, Tierney M, Sacco A (2015) FACS-based satellite cell isolation from mouse hind limb muscles. Bio Protoc 5:e1558. doi:10.21769/BioProtoc.1558

    Article  PubMed  PubMed Central  Google Scholar 

  24. Danoviz ME, Yablonka-Reuveni Z (2012) Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. Methods Mol Biol Clifton N J 798:21–52. doi:10.1007/978-1-61779-343-1_2

    Article  CAS  Google Scholar 

  25. Lagha M, Sato T, Regnault B et al (2010) Transcriptome analyses based on genetic screens for Pax3 myogenic targets in the mouse embryo. BMC Genomics 11:696. doi:10.1186/1471-2164-11-696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sambasivan R, Yao R, Kissenpfennig A et al (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138:3647–3656. doi:10.1242/dev.067587

    Article  CAS  PubMed  Google Scholar 

  27. Liu L, Cheung TH, Charville GW, Rando TA (2015) Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting. Nat Protoc 10:1612–1624. doi:10.1038/nprot.2015.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arora R, Rumman M, Venugopal N, et al (2017) Mimicking muscle stem cell quiescence in culture: methods for synchronization in reversible arrest. Methods Mol Biol 1556:283–302. doi: 10.1007/978-1-4939-6771-1_15

  29. Srivastava S, Mishra RK, Dhawan J (2010) Regulation of cellular chromatin state: insights from quiescence and differentiation. Organogenesis 6:37–47

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hui Ng H, Bird A (2000) Histone deacetylases: silencers for hire. Trends Biochem Sci 25:121–126. doi:10.1016/S0968-0004(00)01551-6

    Article  CAS  Google Scholar 

  31. Kaeser MD, Emerson BM (2006) Remodeling plans for cellular specialization: unique styles for every room. Curr Opin Genet Dev 16:508–512. doi:10.1016/j.gde.2006.08.001

    Article  CAS  PubMed  Google Scholar 

  32. Turner BM (2007) Defining an epigenetic code. Nat Cell Biol 9:2–6. doi:10.1038/ncb0107-2

    Article  CAS  PubMed  Google Scholar 

  33. Buermans HPJ, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842:1932–1941. doi:10.1016/j.bbadis.2014.06.015

    Article  CAS  PubMed  Google Scholar 

  34. Darzynkiewicz Z, Evenson D, Staiano-Coico L et al (1979) Relationship between RNA content and progression of lymphocytes through S phase of cell cycle. Proc Natl Acad Sci U S A 76:358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Habets PEMH, Franco D, Ruijter JM et al (1999) RNA content differs in slow and fast muscle fibers: implications for interpretation of changes in muscle gene expression. J Histochem Cytochem 47:995–1004. doi:10.1177/002215549904700803

    Article  CAS  PubMed  Google Scholar 

  36. Darzynkiewicz Z, Evenson DP, Staiano-Coico L et al (1979) Correlation between cell cycle duration and RNA content. J Cell Physiol 100:425–438. doi:10.1002/jcp.1041000306

    Article  CAS  PubMed  Google Scholar 

  37. Darzynkiewicz Z (1987) Cytochemical probes of cycling and quiescent cells applicable to flow cytometry. Springer, New York, NY

    Book  Google Scholar 

  38. Poot M, Rizk-Rabin M, Hoehn H, Pavlovitch JH (1990) Cell size and RNA content correlate with cell differentiation and proliferative capacity of rat keratinocytes. J Cell Physiol 143:279–286. doi:10.1002/jcp.1041430211

    Article  CAS  PubMed  Google Scholar 

  39. Schmidt EE, Schibler U (1995) Cell size regulation, a mechanism that controls cellular RNA accumulation: consequences on regulation of the ubiquitous transcription factors Oct1 and NF-Y and the liver-enriched transcription factor DBP. J Cell Biol 128:467–483

    Article  CAS  PubMed  Google Scholar 

  40. Elliott SG, McLaughlin CS (1978) Rate of macromolecular synthesis through the cell cycle of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 75:4384–4388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Killander D, Zetterberg A (1965) Quantitative cytochemical studies on interphase growth. i. determination of DNA, RNA and mass content of age determined mouse fibroblasts in vitro and of intercellular variation in generation time. Exp Cell Res 38:272–284

    Article  CAS  PubMed  Google Scholar 

  42. Marguerat S, Bähler J (2012) Coordinating genome expression with cell size. Trends Genet 28:560–565. doi:10.1016/j.tig.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  43. Benecke BJ, Ben-Ze’ev A, Penman S (1980) The regulation of RNA metabolism in suspended and reattached anchorage-dependent 3T6 fibroblasts. J Cell Physiol 103:247–254. doi:10.1002/jcp.1041030209

    Article  CAS  PubMed  Google Scholar 

  44. Lovén J, Orlando DA, Sigova AA et al (2012) Revisiting global gene expression analysis. Cell 151:476–482. doi:10.1016/j.cell.2012.10.012

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kouzine F, Wojtowicz D, Yamane A et al (2013) Global regulation of promoter melting in naive lymphocytes. Cell 153:988–999. doi:10.1016/j.cell.2013.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sachidanandan C, Sambasivan R, Dhawan J (2002) Tristetraprolin and LPS-inducible CXC chemokine are rapidly induced in presumptive satellite cells in response to skeletal muscle injury. J Cell Sci 115:2701–2712

    CAS  PubMed  Google Scholar 

  47. Blau HM, Chiu CP, Webster C (1983) Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32:1171–1180

    Article  CAS  PubMed  Google Scholar 

  48. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    Article  CAS  PubMed  Google Scholar 

  49. Milasincic DJ, Dhawan J, Farmer SR (1996) Anchorage-dependent control of muscle-specific gene expression in C2C12 mouse myoblasts. In Vitro Cell Dev Biol Anim 32:90–99

    Article  CAS  PubMed  Google Scholar 

  50. Sellathurai J, Cheedipudi S, Dhawan J, Schrøder HD (2013) A novel in vitro model for studying quiescence and activation of primary isolated human myoblasts. PLoS One 8:e64067. doi:10.1371/journal.pone.0064067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheedipudi S, Puri D, Saleh A et al (2015) A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene. Nucleic Acids Res 43:6236–6256. doi:10.1093/nar/gkv567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fukada S, Uezumi A, Ikemoto M et al (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25:2448–2459. doi:10.1634/stemcells.2007-0019

    Article  CAS  PubMed  Google Scholar 

  53. Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. doi:10.1093/bioinformatics/btu638

    Article  CAS  PubMed  Google Scholar 

  54. Anders S, McCarthy DJ, Chen Y et al (2013) Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat Protoc 8:1765–1786. doi:10.1038/nprot.2013.099

    Article  PubMed  Google Scholar 

  55. Cui P, Lin Q, Ding F et al (2010) A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing. Genomics 96:259–265. doi:10.1016/j.ygeno.2010.07.010

    Article  CAS  PubMed  Google Scholar 

  56. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. doi:10.1186/gb-2009-10-3-r25

    Article  PubMed  PubMed Central  Google Scholar 

  57. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111. doi:10.1093/bioinformatics/btp120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578. doi:10.1038/nprot.2012.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim D, Pertea G, Trapnell C et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36. doi:10.1186/gb-2013-14-4-r36

    Article  PubMed  PubMed Central  Google Scholar 

  60. Goff L, Trapnell C, Kelley D (2013) cummeRbund: analysis, exploration, manipulation, and visualization of Cufflinks high-throughput sequencing data. R package version 2.16.0

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Divya Tej Sowpati for help with the bioinformatics analysis pipeline and development of custom visualization tools. HG was supported by doctoral fellowships from CSIR. The Mishra and Dhawan labs are supported by core funds from the Council of Scientific and Industrial Research to CCMB, and a collaborative grant from the Dept. of Biotechnology Indo-Australia Biotechnology Fund. JD also acknowledges funding from and the Dept. of Biotechnology Indo-Danish Strategic Fund, Indo-French Center for the Promotion of Advanced Research and from the Dept. of Biotechnology Institute for Stem Cell Biology and Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsna Dhawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Srivastava, S., Gala, H.P., Mishra, R.K., Dhawan, J. (2018). Distinguishing States of Arrest: Genome-Wide Descriptions of Cellular Quiescence Using ChIP-Seq and RNA-Seq Analysis. In: Lacorazza, H. (eds) Cellular Quiescence. Methods in Molecular Biology, vol 1686. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7371-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7371-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7370-5

  • Online ISBN: 978-1-4939-7371-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics