Skip to main content

DNA Accessibility by MNase Digestions

  • Protocol
  • First Online:
Chromatin Immunoprecipitation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1689))

Abstract

Micrococcal nuclease (MNase) digestion of chromatin cuts linker DNA between neighboring nucleosomes and in this way generates mononucleosomes. The protected fragments can then be analyzed by genome-wide sequencing techniques or by quantitative PCR to obtain information about the positions of nucleosomes in the chromatin. Nucleosomes are differentially sensitive to MNase digestion, which means that titrations of MNase should be performed to obtain a comprehensive map of the nucleosome positions of a chromatin region or genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132:311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chereji RV, Kan TW, Grudniewska MK, Romashchenko AV, Berezikov E, Zhimulev IF, Guryev V, Morozov AV, Moshkin YM (2016) Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster. Nucleic Acids Res 44(3):1036–1051. doi:10.1093/nar/gkv978

    Article  CAS  PubMed  Google Scholar 

  3. Chereji RV, Ocampo J, Clark DJ (2017) MNase-sensitive complex in yeast: nucleosomes and non-histone barriers. Mol Cell 65(3):565–577.e3. doi:10.1016/j.molcel.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  4. Crawford GE, Davis S, Scacheri PC, Renaud G, Halawi MJ, Erdos MR, Green R, Meltzer PS, Wolfsberg TG, Collins FS et al (2006) DNase-chip: a highresolution method to identify DNase I hypersensitive sites using tiled microarrays. Nat Methods 3:503–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E, Lubling Y, Widom J, Segal E (2008) Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol 4:e1000216

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lorzadeh A, Bilenky M, Hammond C, Knapp DJ, Li L, Miller PH, Carles A, Heravi-Moussavi A, Gakkhar S, Moksa M, Eaves CJ, Hirst M (2016) Nucleosome density ChIP-seq identifies distinct chromatin modification signatures associated with MNase accessibility. Cell Rep 17(8):2112–2124. doi:10.1016/j.celrep.2016.10.055

    Article  CAS  PubMed  Google Scholar 

  7. Lutter LC (1979) Precise location of DNase I cutting sites in the nucleosome core determined by high resolution gel electrophoresis. Nucleic Acids Res 6:41–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF (2008) A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18:1073–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mieczkowski J, Cook A, Bowman SK, Mueller B, Alver BH, Kundu S, Deaton AM, Urban JA, Larschan E, Park PJ, Kingston RE, Tolstorukov MY (2016) MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nat Commun 7:11485. doi:10.1038/ncomms11485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Noll M, Kornberg RD (1977) Action of micrococcal nuclease on chromatin and the location of histone H1. J Mol Biol 109:393–404

    Article  CAS  PubMed  Google Scholar 

  11. Petesch SJ, Lis JT (2008) Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134(1):74–84. doi:10.1016/j.cell.2008.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rodriguez J, McKnight JN, Tsukiyama T (2014) Genome-wide analysis of nucleosome positions, occupancy, and accessibility in yeast: nucleosome mapping, high-resolution histone ChIP, and NCAM. Curr Protoc Mol Biol 108:21.28.1–21.2816. doi:10.1002/0471142727.mb2128s108

    Article  Google Scholar 

  13. Sadeghifar F, Böhm S, Vintermist A, Östlund Farrants AK (2015) The B-WICH chromatin-remodelling complex regulates RNA polymerase III transcription by promoting Max-dependent c-Myc binding. Nucleic Acids Res 43(9):4477–4490. doi:10.1093/nar/gkv312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vierstra J, Wang H, John S, Sandstrom R, Stamatoyannopoulos JA (2014) Coupling transcription factor occupancy to nucleosome architecture with DNase-FLASH. Nat Methods 11:66–72

    Article  CAS  PubMed  Google Scholar 

  15. Vintermist A, Böhm S, Sadeghifar F, Louvet E, Mansén A, Percipalle P, Ostlund Farrants AK (2011) The chromatin remodelling complex B-WICH changes the chromatin structure and recruits histone acetyl-transferases to active rRNA genes. PLoS One 6(4):e19184. doi:10.1371/journal.pone.0019184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N (2010) High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res 20:90–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weinmann AS, Farnham PJ (2002) Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 26(1):37–47

    Article  CAS  PubMed  Google Scholar 

  18. Zhong J, Luo K, Winter PS, Crawford GE, Iversen ES, Hartemink AJ (2016) Mapping nucleosome positions using DNase-seq. Genome Res 26(3):351–364. doi:10.1101/gr.195602.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann-Kristin Östlund Farrants .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Farrants, AK.Ö. (2018). DNA Accessibility by MNase Digestions. In: Visa, N., Jordán-Pla, A. (eds) Chromatin Immunoprecipitation. Methods in Molecular Biology, vol 1689. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7380-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7380-4_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7379-8

  • Online ISBN: 978-1-4939-7380-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics