Skip to main content

Computational Nanotechnology: A Tool for Screening Therapeutic Nanomaterials Against Alzheimer’s Disease

  • Protocol
  • First Online:
Computational Modeling of Drugs Against Alzheimer’s Disease

Part of the book series: Neuromethods ((NM,volume 132))

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder leading to several structural, biochemical, or electrical abnormalities in the brain. Though it is mainly caused by the mutation in the genes, the other factors such as environment, health, and lifestyle also contribute to the disease. Recent interest has been turned toward harnessing the potential of nanomaterials for the treatment of AD. Assessing the therapeutic potential of the nanomaterials toward AD using in vivo and in vitro methods suffers from several limitations. The conventional in vivo and in vitro methods are laborious and time consuming and it requires sophisticated facilities. Herein we report the computational nanotechnology approaches for modeling the different nanomaterials, assessing the toxicity of the nanomaterials, and strategies to investigate the therapeutic efficacy of these materials for treating AD. This chapter discusses on using Lipinski’s rule of five and rule of three for assessing the drug-like and lead-like characteristics of the nanomaterials. The chapter also addresses the advantages of computational analysis of ADME (absorption, distribution, metabolism, and excretion) characteristics, drug likeliness of nanomaterials, and the role of molecular docking techniques for assessing the therapeutic efficacy of the nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzheimer’s Association (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12(4):459–509

    Article  Google Scholar 

  2. Berrios GE (1991) Alzheimer’s disease: a conceptual history. Int J Geriatr Psychiatry 5:355–365

    Article  Google Scholar 

  3. Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11(4):301–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bachurin SO, Bovina EV, Ustyugov AA (2017) Drugs in clinical trials for Alzheimer's disease: the major trends. Med Res Rev. doi:10.1002/med.21434

  5. Bekris LM, Yu CE, Bird TD, Tsuang DW (2010) Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 23(4):213–227

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bird TD (2008) Genetic aspects of Alzheimer disease. Genet Med 10:231–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Skaper SD (2012) Alzheimer's disease and amyloid: culprit or coincidence? Int Rev Neurobiol doi 102:277–316

    Article  CAS  Google Scholar 

  8. Yoshida S, Suzuki N (1993) Antiamnesic and cholinomimetic side-effects of the cholinesterase inhibitors, physostigmine, tacrine and NIK-247 in rats. Eur J Pharmacol 250(1):117–124

    Article  CAS  PubMed  Google Scholar 

  9. Casey DA, Antimisiaris D, O’Brien J (2010) Drugs for Alzheimer’s disease: are they effective? P T 35(4):208–211

    PubMed  PubMed Central  Google Scholar 

  10. Ridha BH, Josephs KA, Rossor MN (2005) Delusions and hallucinations in dementia with Lewy bodies: worsening with memantine. Neurology 65:481–482

    Article  CAS  PubMed  Google Scholar 

  11. Kumar GP, Khanum F (2010) Neuroprotective potential of phytochemicals. Pharmacogn Rev 6(12):81–90

    Article  Google Scholar 

  12. Howes MJ, Houghton PJ (2012) Ethnobotanical treatment strategies against Alzheimer's disease. Curr Alzheimer Res 9(1):67–85

    Article  CAS  PubMed  Google Scholar 

  13. Galimberti D, Scarpini E (2011) Disease-modifying treatments for Alzheimer's disease. Ther Adv Neurol Disord 4(4):203–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marciani DJ (2016) Rejecting the Alzheimer's disease vaccine development for the wrong reasons. Drug Discov Today 2017 22(4):609–614

    Article  Google Scholar 

  15. Doggui S, Dao L, Ramassamy C (2012) Potential of drug-loaded nanoparticles for Alzheimer's disease: diagnosis, prevention and treatment. Ther Deliv 3(9):1025–1027

    Article  CAS  PubMed  Google Scholar 

  16. Xue X, Wang LR, Sato Y, Jiang Y, Berg M, Yang DS, Nixon RA, Liang XJ (2014) Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer's disease. Nano Lett 14(9):5110–5117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang Z, Ge C, Liu J, Chong Y, Gu Z, Jimenez-Cruz CA, Chai Z, Zhou R (2015) Destruction of amyloid fibrils by graphene through penetration and extraction of peptides. Nanoscale 7(44):18725–18737

    Article  CAS  PubMed  Google Scholar 

  18. Soltani N, Gholami MR (2016) Increase in the Beta-sheet character of an Amyloidogenic peptide upon adsorption onto gold and silver surfaces. Chemphyschem 29. doi:10.1002/cphc.201601000

  19. Merkle RC (1991) Computational nanotechnology. Nanotechnology 2(3):134–141

    Article  Google Scholar 

  20. González-Nilo F, Pérez-Acle T, Guínez-Molinos S, Geraldo DA, Sandoval C, Yévenes A, Santos LS, Laurie VF, Mendoza H, Cachau RE (2011) Nanoinformatics: an emerging area of information technology at the intersection of bioinformatics, computational chemistry and nanobiotechnology. Biol Res 44(1):43–51

    Article  PubMed  Google Scholar 

  21. Zdrojewicz Z, Waracki M, Bugaj B, Pypno D, Cabała K (2015) Medical applications of nanotechnology. Postepy Hig Med Dosw 69:1196–1204

    Article  Google Scholar 

  22. Balasundaram G, Webster TJ (2006) Nanotechnology and biomaterials for orthopedic medical applications. Nanomedicine (Lond) 1(2):169–176

    Article  CAS  Google Scholar 

  23. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57(4):724–803

    Article  CAS  Google Scholar 

  24. Kevin John PA, Muralidharan M, Muniyandi J, Navanietha Krishnaraj R, Sangiliyandi G (2014) Synthesis of silver nanoparticles using pine mushroom extract: a potential antimicrobial agent against E.Coli and B. Subtilis. J Ind Eng Chem 20(4):2325–2321

    Article  Google Scholar 

  25. Navanietha Krishnaraj R, Berchmans S (2013) In vitro antiplatelet activity of silver nanoparticles synthesized using the microorganism Gluconobacter roseus: an AFM-based study. RSC Adv 3:8953–8959

    Article  Google Scholar 

  26. Pramanik A, Kole AK, Navanietha Krishnaraj R, Biswas S, Tiwary CS, Varalakshmi P, Rai SK, Kumar A, Kumbhakar P (2016) A novel technique of synthesis of highly fluorescent carbon nanoparticles from broth constituent and in-vivo bioimaging of C. elegans. J Fluoresc 26(5):1541–1548

    Article  CAS  PubMed  Google Scholar 

  27. Hosseini A, Sharifi AM, Abdollahi M, Najafi R, Baeeri M, Rayegan S, Cheshmehnour J, Hassani S, Bayrami Z, Safa M (2015) Cerium and yttrium oxide nanoparticles against lead-induced oxidative stress and apoptosis in rat hippocampus. Biol Trace Elem Res 164(1):80–89

    Article  CAS  PubMed  Google Scholar 

  28. Ghaznavi H, Najafi R, Mehrzadi S, Hosseini A, Tekyemaroof N, Shakeri-Zadeh A, Rezayat M, Sharifi AM (2015) Neuro-protective effects of cerium and yttrium oxide nanoparticles on high glucose-induced oxidative stress and apoptosis in undifferentiated PC12 cells. Neurol Res 37(7):624–632

    Article  CAS  PubMed  Google Scholar 

  29. Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342(1):86–91

    Article  CAS  PubMed  Google Scholar 

  30. Barnham KJ, Kenche VB, Ciccotosto GD, Smith DP, Tew DJ, Liu X, Perez K, Cranston GA, Johanssen TJ, Volitakis I, Bush AI, Masters CL, White AR, Smith JP, Cherny RA, Cappai R (2008) Platinum-based inhibitors of amyloid-beta as therapeutic agents for Alzheimer's disease. Proc Natl Acad Sci U S A 105(19):6813–6818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Y, Xu LP, Dai W, Dong H, Wen Y, Zhang X (2015) Graphene quantum dots for the inhibition of β amyloid aggregation. Nanoscale 7(45):19060–19065

    Article  CAS  PubMed  Google Scholar 

  32. Wohlfart S, Gelperina S, Kreuter J (2012) Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 161(2):264–273

    Article  CAS  PubMed  Google Scholar 

  33. Kang MK, Lee J, Nguyen AH, Sim SJ (2015) Label-free detection of ApoE4-mediated β-amyloid aggregation on single nanoparticle uncovering Alzheimer's disease. Biosens Bioelectron 72:197–204

    Article  CAS  PubMed  Google Scholar 

  34. Li SS, Lin CW, Wei KC, Huang CY, Hsu PH, Liu HL, Lu YJ, Lin SC, Yang HW, Ma CC (2016) Non-invasive screening for early Alzheimer's disease diagnosis by a sensitively immunomagnetic biosensor. Sci Rep 6:25155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haiyan D, Yu G, Patrick JS, Zaisheng W, Jianguo X, Lee J (2016) The nanotechnology race between China and USA. Nano Today 11(1):7–12

    Article  Google Scholar 

  36. Doke SK, Dhawale SC (2015) Alternatives to animal testing: a review. Saudi Pharm J 23(3):223–229

    Article  PubMed  Google Scholar 

  37. Maojo V, Fritts M, de la Iglesia D, Cachau RE, Garcia-Remesal M, Mitchell JA, Kulikowski C (2012) Nanoinformatics: a new area of research in nanomedicine. Int J Nanomedicine 7:3867–3890

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Chem 4:17

    Article  CAS  Google Scholar 

  39. Navanietha Krishnaraj R, Chandran S, Pal P, Berchmans S (2014) Investigations on the antiretroviral activity of carbon nanotubes using computational molecular approach, combinatorial chemistry and high throughput screening 17(6):531–5

    Google Scholar 

  40. Vecitis CD, Zodrow KR, Kang S, Elimelech M (2010) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4:5471–5479

    Article  CAS  PubMed  Google Scholar 

  41. Samorì C, Ali-Boucetta H, Sainz R, Guo C, Toma FM, Fabbro C, da Ros T, Prato M, Kostarelos K, Bianco A (2010) Enhanced anticancer activityof multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. Chem Commun (Camb) 46:1494–1496

    Article  Google Scholar 

  42. Lucente-Schultz RM, Moore VC, Leonard AD, Price BK, Kosynkin DV, Lu M, Partha R, Conyers JL, Tour JM (2009) Antioxidant single-walled carbon nanotubes. J Am Chem Soc 131(11):3934–3941

    Article  CAS  PubMed  Google Scholar 

  43. Ji H, Yang Z, Jiang W, Geng C, Gong M, Xiao H, Wang Z, Cheng L (2008) Antiviral activity of nano carbon fullerene lipidosome against influenza virus in vitro. J Huazhong Univ Sci Technolog Med Sci 28:243–246

    Article  PubMed  Google Scholar 

  44. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, Radomski MW (2005) Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 146(6):882–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Novoselov KS, Fal′ko VI, Colombo L, Gellert PR, Schwab MG, Kim K A roadmap for graphene. Nature 490:192–200

    Google Scholar 

  46. Navanietha Krishnaraj R, Chandran S, Pal P, Varalakshmi P, Malliga P (2014) Molecular interactions of Graphene with HIV-Vpr, Nef and gag proteins. Korean J Chem Eng Springer 31(5):744–747

    Article  Google Scholar 

  47. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41(6):2283–2307

    Article  CAS  PubMed  Google Scholar 

  48. Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42(2):530–547

    Article  CAS  PubMed  Google Scholar 

  49. Aghili Z, Taheri S, Zeinabad HA, Pishkar L, Saboury AA, Rahimi A, Falahati M (2016) Investigating the interaction of Fe nanoparticles with lysozyme by biophysical and molecular docking studies. PLoS One 11(10):e0164878

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tokarský J, Čapková P, Rafaja D, Klemm V, Valášková M, Kukutschová J, Tomášek V (2010) Adhesion of silver nanoparticles on the clay substrates; modeling and experiment. Appl Surf Sci 256(9):2841–2848

    Article  Google Scholar 

  51. Cagın T, Wang G, Martin R, Breen N, Goddard WA III (2000) Molecular modelling of dendrimers for nanoscale applications. Nanotechnology 11(2000):77–84

    Article  Google Scholar 

  52. Navanietha Krishnaraj R., Chandran S., Pal P., Berchmans S. (2013) Screening of photosynthetic pigments for herbicidal activity with a new computational molecular approach, Combinatorial chemistry and high throughput screening, 16, 777–781

    Google Scholar 

  53. Navanietha Krishnaraj R, Chandran S, Pal P, Berchmans S (2014) Molecular Modeling and assessing the catalytic activity of glucose dehydrogenase of Gluconobacter suboxydans with a new approach for power generation in a microbial fuel cell. Curr Bioinforma 9(3):327–330

    Article  Google Scholar 

  54. Dodda SR, Sarkar N, Aikat K, Navanietha Krishnaraj R, Bhattacharjee S, Bagchi A, Mukhopadhyay SS (2016) Insights from the moleculardynamics simulation of Cellobiohydrolase Cel6A molecular structural model from Aspergillus fumigates NITDGPKA3. Comb Chem High Throughput Screen 19:000

    CAS  Google Scholar 

  55. Navanietha Krishnaraj R, Kumari SS, Mukhopadhyay SS (2016) Antagonistic molecular interactions of photosynthetic pigments with molecular disease targets-a new approach to treat AD and ALS. J Recept Signal Transduction 36:67–71

    Article  Google Scholar 

  56. Navanietha Krishnaraj R, Samanta S, Kumar A, Sani R (2017) Bioprospecting of the thermostable cellulolytic enzyme through modeling and virtual screening method. Can J Biotechnol 1(1):19–25

    Article  Google Scholar 

  57. Navanietha Krishnaraj R, Pal P (2017) Enzyme-substrate interaction based approach for screening Electroactive microorganisms for microbial fuel cell applications. Indian J Chem Technol 24(1):93–96

    Google Scholar 

  58. Navanietha Krishnaraj R, Berchmans S, Pal P (2015) The three-compartment microbial fuel cell: a new sustainable approach to bioelectricity generation from lignocellulosic biomass. Cellulose 22:655–662

    Article  Google Scholar 

  59. Bhuvaneswari A, Navanietha Krishnaraj R, Berchmans S (2013) Metamorphosis of pathogen to electrigen at the electrode/electrolyte interface: direct electron transfer of Staphylococcus aureus leading to superior electrocatalytic activity. Electrochem Commun 34:25–28

    Article  CAS  Google Scholar 

  60. Navanietha Krishnaraj R, Karthikeyan R, Berchmans S, Chandran S, Pal P (2013) Functionalization of electrochemically deposited chitosan films with alginate and Prussian blue for enhanced performance of microbial fuel cells. Electrochim Acta 112:465–472

    Article  Google Scholar 

  61. Navanietha Krishnaraj N, Yu JS (2014) Systems biology approaches for microbial fuel cell applications. Bioenergy: opportunities and challenges. Apple Academic Press, New Jersey, pp 125–139. doi:10.1201/b18718-8. ISBN-10: 1771881097.

  62. Mahato D, Samanta D, Mukhopadhyay SS, Navanietha Krishnaraj R (2016) A systems biology approach for elucidating the interaction of curcumin with Fanconi anemia FANC G protein and the key disease targets of leukemia. J Recept Signal Transduct 8:1–7

    Google Scholar 

  63. Coulson EJ, May LM, Osborne SL, Reid K, Underwood CK, Meunier FA, Bartlett PF, Sah P (2008) p75 neurotrophin receptor mediates neuronal cell death by activating GIRK channels through phosphatidylinositol 4,5-bisphosphate. J Neurosci 28:315–324

    Article  CAS  PubMed  Google Scholar 

  64. Kalb R (2005) The protean actions of neurotrophins and their receptors on the life and death of neurons. Trends Neurosci 28:5–11

    Article  CAS  PubMed  Google Scholar 

  65. Ma L, Ohyagi Y, Miyoshi K, Sakae N, Motomura K, Taniwaki T, Furuya H, Takeda K, Tabira T, Kira J (2009) Increase in p53 protein levels by presenilin 1 gene mutations and its inhibition by secretase inhibitors. J Alzheimers Dis 16(3):565–575

    Article  CAS  PubMed  Google Scholar 

  66. Fu AK, Hung KW, Huang H, Gu S, Shen Y, Cheng EY, Ip FC, Huang X, Fu WY, Ip NY (2014) Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer's disease. Proc Natl Acad Sci U S A 111(27):9959–9964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rosenberger AF, Rozemuller AJ, van der Flier WM, Scheltens P, van der Vies SM, Hoozemans JJ (2014) Altered distribution of the EphA4 kinase in hippocampal brain tissue of patients with Alzheimer's disease correlates with pathology. Acta Neuropathol Commun 2:79

    PubMed  PubMed Central  Google Scholar 

  68. Schmalbach S, Petri S (2010) Histone deacetylation and motor neuron degeneration. CNS Neurol Disord Drug Targets 9:279–284

    Article  CAS  PubMed  Google Scholar 

  69. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Navanietha Krishnaraj R., Sani R., (2017) Molecular interactions of carbon nanomaterials with disease target proteins of Alzheimer’s disease. (our unpublished data)

    Google Scholar 

  71. Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM (2005) Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx 2(4):554–571

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pardridge WM (2012) Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab 32(11):1959–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8(19):876–877

    Article  PubMed  Google Scholar 

  74. Agyare EK, Curran GL, Ramakrishnan M, Yu CC, Poduslo JF, Kandimalla KK (2008) Development of a smart nano-vehicle to target cerebrovascular amyloid deposits and brain parenchymal plaques observed in Alzheimer's disease and cerebral amyloid angiopathy. Pharm Res 25(11):2674–2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Panza F, Frisardi V, Solfrizzi V, Imbimbo BP, Logroscino G, Santamato A, Greco A, Seripa D, Pilotto A (2012) Immunotherapy for Alzheimer's disease: from anti-β-amyloid to tau-based immunization strategies. Immunotherapy 4(2):213–238

    Article  CAS  PubMed  Google Scholar 

  76. Rygiel K (2016) Novel strategies for Alzheimer's disease treatment: an overview of anti-amyloid beta monoclonal antibodies. Indian J Pharm 48(6):629–636

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Navanietha Krishnaraj or Rajesh K. Sani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Navanietha Krishnaraj, R., Samanta, D., Sani, R.K. (2018). Computational Nanotechnology: A Tool for Screening Therapeutic Nanomaterials Against Alzheimer’s Disease. In: Roy, K. (eds) Computational Modeling of Drugs Against Alzheimer’s Disease. Neuromethods, vol 132. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7404-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7404-7_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7403-0

  • Online ISBN: 978-1-4939-7404-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics